| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 | /* dgebrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;static doublereal c_b21 = -1.;static doublereal c_b22 = 1.;/* Subroutine */ int dgebrd_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *	taup, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, j, nb, nx;    doublereal ws;    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    integer nbmin, iinfo, minmn;    extern /* Subroutine */ int dgebd2_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, integer *), dlabrd_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal 	    *, doublereal *, doublereal *, integer *, doublereal *, integer *)	    , xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ldwrkx, ldwrky, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEBRD reduces a general real M-by-N matrix A to upper or lower *//*  bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. *//*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows in the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns in the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N general matrix to be reduced. *//*          On exit, *//*          if m >= n, the diagonal and the first superdiagonal are *//*            overwritten with the upper bidiagonal matrix B; the *//*            elements below the diagonal, with the array TAUQ, represent *//*            the orthogonal matrix Q as a product of elementary *//*            reflectors, and the elements above the first superdiagonal, *//*            with the array TAUP, represent the orthogonal matrix P as *//*            a product of elementary reflectors; *//*          if m < n, the diagonal and the first subdiagonal are *//*            overwritten with the lower bidiagonal matrix B; the *//*            elements below the first subdiagonal, with the array TAUQ, *//*            represent the orthogonal matrix Q as a product of *//*            elementary reflectors, and the elements above the diagonal, *//*            with the array TAUP, represent the orthogonal matrix P as *//*            a product of elementary reflectors. *//*          See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  D       (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The diagonal elements of the bidiagonal matrix B: *//*          D(i) = A(i,i). *//*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1) *//*          The off-diagonal elements of the bidiagonal matrix B: *//*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; *//*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. *//*  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix Q. See Further Details. *//*  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix P. See Further Details. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of the array WORK.  LWORK >= max(1,M,N). *//*          For optimum performance LWORK >= (M+N)*NB, where NB *//*          is the optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  The matrices Q and P are represented as products of elementary *//*  reflectors: *//*  If m >= n, *//*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1) *//*  Each H(i) and G(i) has the form: *//*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' *//*  where tauq and taup are real scalars, and v and u are real vectors; *//*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); *//*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); *//*  tauq is stored in TAUQ(i) and taup in TAUP(i). *//*  If m < n, *//*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m) *//*  Each H(i) and G(i) has the form: *//*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' *//*  where tauq and taup are real scalars, and v and u are real vectors; *//*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); *//*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); *//*  tauq is stored in TAUQ(i) and taup in TAUP(i). *//*  The contents of A on exit are illustrated by the following examples: *//*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): *//*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 ) *//*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 ) *//*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 ) *//*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 ) *//*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 ) *//*    (  v1  v2  v3  v4  v5 ) *//*  where d and e denote diagonal and off-diagonal elements of B, vi *//*  denotes an element of the vector defining H(i), and ui an element of *//*  the vector defining G(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --d__;    --e;    --tauq;    --taup;    --work;    /* Function Body */    *info = 0;/* Computing MAX */    i__1 = 1, i__2 = ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1);    nb = max(i__1,i__2);    lwkopt = (*m + *n) * nb;    work[1] = (doublereal) lwkopt;    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    } else /* if(complicated condition) */ {/* Computing MAX */	i__1 = max(1,*m);	if (*lwork < max(i__1,*n) && ! lquery) {	    *info = -10;	}    }    if (*info < 0) {	i__1 = -(*info);	xerbla_("DGEBRD", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    minmn = min(*m,*n);    if (minmn == 0) {	work[1] = 1.;	return 0;    }    ws = (doublereal) max(*m,*n);    ldwrkx = *m;    ldwrky = *n;    if (nb > 1 && nb < minmn) {/*        Set the crossover point NX. *//* Computing MAX */	i__1 = nb, i__2 = ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1);	nx = max(i__1,i__2);/*        Determine when to switch from blocked to unblocked code. */	if (nx < minmn) {	    ws = (doublereal) ((*m + *n) * nb);	    if ((doublereal) (*lwork) < ws) {/*              Not enough work space for the optimal NB, consider using *//*              a smaller block size. */		nbmin = ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1);		if (*lwork >= (*m + *n) * nbmin) {		    nb = *lwork / (*m + *n);		} else {		    nb = 1;		    nx = minmn;		}	    }	}    } else {	nx = minmn;    }    i__1 = minmn - nx;    i__2 = nb;    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {/*        Reduce rows and columns i:i+nb-1 to bidiagonal form and return *//*        the matrices X and Y which are needed to update the unreduced *//*        part of the matrix */	i__3 = *m - i__ + 1;	i__4 = *n - i__ + 1;	dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[		i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx 		* nb + 1], &ldwrky);/*        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update *//*        of the form  A := A - V*Y' - X*U' */	i__3 = *m - i__ - nb + 1;	i__4 = *n - i__ - nb + 1;	dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__ 		+ nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &		ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);	i__3 = *m - i__ - nb + 1;	i__4 = *n - i__ - nb + 1;	dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, &		work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &		c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);/*        Copy diagonal and off-diagonal elements of B back into A */	if (*m >= *n) {	    i__3 = i__ + nb - 1;	    for (j = i__; j <= i__3; ++j) {		a[j + j * a_dim1] = d__[j];		a[j + (j + 1) * a_dim1] = e[j];/* L10: */	    }	} else {	    i__3 = i__ + nb - 1;	    for (j = i__; j <= i__3; ++j) {		a[j + j * a_dim1] = d__[j];		a[j + 1 + j * a_dim1] = e[j];/* L20: */	    }	}/* L30: */    }/*     Use unblocked code to reduce the remainder of the matrix */    i__2 = *m - i__ + 1;    i__1 = *n - i__ + 1;    dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &	    tauq[i__], &taup[i__], &work[1], &iinfo);    work[1] = ws;    return 0;/*     End of DGEBRD */} /* dgebrd_ */
 |