| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746 | /* dgbsvxx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dgbsvxx_(char *fact, char *trans, integer *n, integer *	kl, integer *ku, integer *nrhs, doublereal *ab, integer *ldab, 	doublereal *afb, integer *ldafb, integer *ipiv, char *equed, 	doublereal *r__, doublereal *c__, doublereal *b, integer *ldb, 	doublereal *x, integer *ldx, doublereal *rcond, doublereal *rpvgrw, 	doublereal *berr, integer *n_err_bnds__, doublereal *err_bnds_norm__, 	doublereal *err_bnds_comp__, integer *nparams, doublereal *params, 	doublereal *work, integer *iwork, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 	    x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2;    doublereal d__1, d__2;    /* Local variables */    integer i__, j;    doublereal amax;    extern doublereal dla_gbrpvgrw__(integer *, integer *, integer *, integer 	    *, doublereal *, integer *, doublereal *, integer *);    extern logical lsame_(char *, char *);    doublereal rcmin, rcmax;    logical equil;    extern doublereal dlamch_(char *);    extern /* Subroutine */ int dlaqgb_(integer *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, char *);    doublereal colcnd;    extern /* Subroutine */ int dgbtrf_(integer *, integer *, integer *, 	    integer *, doublereal *, integer *, integer *, integer *);    logical nofact;    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    xerbla_(char *, integer *);    doublereal bignum;    extern /* Subroutine */ int dgbtrs_(char *, integer *, integer *, integer 	    *, integer *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *);    integer infequ;    logical colequ;    doublereal rowcnd;    logical notran;    doublereal smlnum;    logical rowequ;    extern /* Subroutine */ int dlascl2_(integer *, integer *, doublereal *, 	    doublereal *, integer *), dgbequb_(integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *), dgbrfsx_(	    char *, char *, integer *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     integer *, doublereal *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *);/*     -- LAPACK driver routine (version 3.2)                          -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- November 2008                                                -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*     Purpose *//*     ======= *//*     DGBSVXX uses the LU factorization to compute the solution to a *//*     double precision system of linear equations  A * X = B,  where A is an *//*     N-by-N matrix and X and B are N-by-NRHS matrices. *//*     If requested, both normwise and maximum componentwise error bounds *//*     are returned. DGBSVXX will return a solution with a tiny *//*     guaranteed error (O(eps) where eps is the working machine *//*     precision) unless the matrix is very ill-conditioned, in which *//*     case a warning is returned. Relevant condition numbers also are *//*     calculated and returned. *//*     DGBSVXX accepts user-provided factorizations and equilibration *//*     factors; see the definitions of the FACT and EQUED options. *//*     Solving with refinement and using a factorization from a previous *//*     DGBSVXX call will also produce a solution with either O(eps) *//*     errors or warnings, but we cannot make that claim for general *//*     user-provided factorizations and equilibration factors if they *//*     differ from what DGBSVXX would itself produce. *//*     Description *//*     =========== *//*     The following steps are performed: *//*     1. If FACT = 'E', double precision scaling factors are computed to equilibrate *//*     the system: *//*       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B *//*       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B *//*       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B *//*     Whether or not the system will be equilibrated depends on the *//*     scaling of the matrix A, but if equilibration is used, A is *//*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') *//*     or diag(C)*B (if TRANS = 'T' or 'C'). *//*     2. If FACT = 'N' or 'E', the LU decomposition is used to factor *//*     the matrix A (after equilibration if FACT = 'E') as *//*       A = P * L * U, *//*     where P is a permutation matrix, L is a unit lower triangular *//*     matrix, and U is upper triangular. *//*     3. If some U(i,i)=0, so that U is exactly singular, then the *//*     routine returns with INFO = i. Otherwise, the factored form of A *//*     is used to estimate the condition number of the matrix A (see *//*     argument RCOND). If the reciprocal of the condition number is less *//*     than machine precision, the routine still goes on to solve for X *//*     and compute error bounds as described below. *//*     4. The system of equations is solved for X using the factored form *//*     of A. *//*     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), *//*     the routine will use iterative refinement to try to get a small *//*     error and error bounds.  Refinement calculates the residual to at *//*     least twice the working precision. *//*     6. If equilibration was used, the matrix X is premultiplied by *//*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so *//*     that it solves the original system before equilibration. *//*     Arguments *//*     ========= *//*     Some optional parameters are bundled in the PARAMS array.  These *//*     settings determine how refinement is performed, but often the *//*     defaults are acceptable.  If the defaults are acceptable, users *//*     can pass NPARAMS = 0 which prevents the source code from accessing *//*     the PARAMS argument. *//*     FACT    (input) CHARACTER*1 *//*     Specifies whether or not the factored form of the matrix A is *//*     supplied on entry, and if not, whether the matrix A should be *//*     equilibrated before it is factored. *//*       = 'F':  On entry, AF and IPIV contain the factored form of A. *//*               If EQUED is not 'N', the matrix A has been *//*               equilibrated with scaling factors given by R and C. *//*               A, AF, and IPIV are not modified. *//*       = 'N':  The matrix A will be copied to AF and factored. *//*       = 'E':  The matrix A will be equilibrated if necessary, then *//*               copied to AF and factored. *//*     TRANS   (input) CHARACTER*1 *//*     Specifies the form of the system of equations: *//*       = 'N':  A * X = B     (No transpose) *//*       = 'T':  A**T * X = B  (Transpose) *//*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose) *//*     N       (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     KL      (input) INTEGER *//*     The number of subdiagonals within the band of A.  KL >= 0. *//*     KU      (input) INTEGER *//*     The number of superdiagonals within the band of A.  KU >= 0. *//*     NRHS    (input) INTEGER *//*     The number of right hand sides, i.e., the number of columns *//*     of the matrices B and X.  NRHS >= 0. *//*     AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1. *//*     The j-th column of A is stored in the j-th column of the *//*     array AB as follows: *//*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) *//*     If FACT = 'F' and EQUED is not 'N', then AB must have been *//*     equilibrated by the scaling factors in R and/or C.  AB is not *//*     modified if FACT = 'F' or 'N', or if FACT = 'E' and *//*     EQUED = 'N' on exit. *//*     On exit, if EQUED .ne. 'N', A is scaled as follows: *//*     EQUED = 'R':  A := diag(R) * A *//*     EQUED = 'C':  A := A * diag(C) *//*     EQUED = 'B':  A := diag(R) * A * diag(C). *//*     LDAB    (input) INTEGER *//*     The leading dimension of the array AB.  LDAB >= KL+KU+1. *//*     AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) *//*     If FACT = 'F', then AFB is an input argument and on entry *//*     contains details of the LU factorization of the band matrix *//*     A, as computed by DGBTRF.  U is stored as an upper triangular *//*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, *//*     and the multipliers used during the factorization are stored *//*     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is *//*     the factored form of the equilibrated matrix A. *//*     If FACT = 'N', then AF is an output argument and on exit *//*     returns the factors L and U from the factorization A = P*L*U *//*     of the original matrix A. *//*     If FACT = 'E', then AF is an output argument and on exit *//*     returns the factors L and U from the factorization A = P*L*U *//*     of the equilibrated matrix A (see the description of A for *//*     the form of the equilibrated matrix). *//*     LDAFB   (input) INTEGER *//*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1. *//*     IPIV    (input or output) INTEGER array, dimension (N) *//*     If FACT = 'F', then IPIV is an input argument and on entry *//*     contains the pivot indices from the factorization A = P*L*U *//*     as computed by DGETRF; row i of the matrix was interchanged *//*     with row IPIV(i). *//*     If FACT = 'N', then IPIV is an output argument and on exit *//*     contains the pivot indices from the factorization A = P*L*U *//*     of the original matrix A. *//*     If FACT = 'E', then IPIV is an output argument and on exit *//*     contains the pivot indices from the factorization A = P*L*U *//*     of the equilibrated matrix A. *//*     EQUED   (input or output) CHARACTER*1 *//*     Specifies the form of equilibration that was done. *//*       = 'N':  No equilibration (always true if FACT = 'N'). *//*       = 'R':  Row equilibration, i.e., A has been premultiplied by *//*               diag(R). *//*       = 'C':  Column equilibration, i.e., A has been postmultiplied *//*               by diag(C). *//*       = 'B':  Both row and column equilibration, i.e., A has been *//*               replaced by diag(R) * A * diag(C). *//*     EQUED is an input argument if FACT = 'F'; otherwise, it is an *//*     output argument. *//*     R       (input or output) DOUBLE PRECISION array, dimension (N) *//*     The row scale factors for A.  If EQUED = 'R' or 'B', A is *//*     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R *//*     is not accessed.  R is an input argument if FACT = 'F'; *//*     otherwise, R is an output argument.  If FACT = 'F' and *//*     EQUED = 'R' or 'B', each element of R must be positive. *//*     If R is output, each element of R is a power of the radix. *//*     If R is input, each element of R should be a power of the radix *//*     to ensure a reliable solution and error estimates. Scaling by *//*     powers of the radix does not cause rounding errors unless the *//*     result underflows or overflows. Rounding errors during scaling *//*     lead to refining with a matrix that is not equivalent to the *//*     input matrix, producing error estimates that may not be *//*     reliable. *//*     C       (input or output) DOUBLE PRECISION array, dimension (N) *//*     The column scale factors for A.  If EQUED = 'C' or 'B', A is *//*     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C *//*     is not accessed.  C is an input argument if FACT = 'F'; *//*     otherwise, C is an output argument.  If FACT = 'F' and *//*     EQUED = 'C' or 'B', each element of C must be positive. *//*     If C is output, each element of C is a power of the radix. *//*     If C is input, each element of C should be a power of the radix *//*     to ensure a reliable solution and error estimates. Scaling by *//*     powers of the radix does not cause rounding errors unless the *//*     result underflows or overflows. Rounding errors during scaling *//*     lead to refining with a matrix that is not equivalent to the *//*     input matrix, producing error estimates that may not be *//*     reliable. *//*     B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*     On entry, the N-by-NRHS right hand side matrix B. *//*     On exit, *//*     if EQUED = 'N', B is not modified; *//*     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by *//*        diag(R)*B; *//*     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is *//*        overwritten by diag(C)*B. *//*     LDB     (input) INTEGER *//*     The leading dimension of the array B.  LDB >= max(1,N). *//*     X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*     If INFO = 0, the N-by-NRHS solution matrix X to the original *//*     system of equations.  Note that A and B are modified on exit *//*     if EQUED .ne. 'N', and the solution to the equilibrated system is *//*     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or *//*     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. *//*     LDX     (input) INTEGER *//*     The leading dimension of the array X.  LDX >= max(1,N). *//*     RCOND   (output) DOUBLE PRECISION *//*     Reciprocal scaled condition number.  This is an estimate of the *//*     reciprocal Skeel condition number of the matrix A after *//*     equilibration (if done).  If this is less than the machine *//*     precision (in particular, if it is zero), the matrix is singular *//*     to working precision.  Note that the error may still be small even *//*     if this number is very small and the matrix appears ill- *//*     conditioned. *//*     RPVGRW  (output) DOUBLE PRECISION *//*     Reciprocal pivot growth.  On exit, this contains the reciprocal *//*     pivot growth factor norm(A)/norm(U). The "max absolute element" *//*     norm is used.  If this is much less than 1, then the stability of *//*     the LU factorization of the (equilibrated) matrix A could be poor. *//*     This also means that the solution X, estimated condition numbers, *//*     and error bounds could be unreliable. If factorization fails with *//*     0<INFO<=N, then this contains the reciprocal pivot growth factor *//*     for the leading INFO columns of A.  In DGESVX, this quantity is *//*     returned in WORK(1). *//*     BERR    (output) DOUBLE PRECISION array, dimension (NRHS) *//*     Componentwise relative backward error.  This is the *//*     componentwise relative backward error of each solution vector X(j) *//*     (i.e., the smallest relative change in any element of A or B that *//*     makes X(j) an exact solution). *//*     N_ERR_BNDS (input) INTEGER *//*     Number of error bounds to return for each right hand side *//*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and *//*     ERR_BNDS_COMP below. *//*     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     normwise relative error, which is defined as follows: *//*     Normwise relative error in the ith solution vector: *//*             max_j (abs(XTRUE(j,i) - X(j,i))) *//*            ------------------------------ *//*                  max_j abs(X(j,i)) *//*     The array is indexed by the type of error information as described *//*     below. There currently are up to three pieces of information *//*     returned. *//*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_NORM(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * dlamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * dlamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated normwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * dlamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*A, where S scales each row by a power of the *//*              radix so all absolute row sums of Z are approximately 1. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *//*     For each right-hand side, this array contains information about *//*     various error bounds and condition numbers corresponding to the *//*     componentwise relative error, which is defined as follows: *//*     Componentwise relative error in the ith solution vector: *//*                    abs(XTRUE(j,i) - X(j,i)) *//*             max_j ---------------------- *//*                         abs(X(j,i)) *//*     The array is indexed by the right-hand side i (on which the *//*     componentwise relative error depends), and the type of error *//*     information as described below. There currently are up to three *//*     pieces of information returned for each right-hand side. If *//*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then *//*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most *//*     the first (:,N_ERR_BNDS) entries are returned. *//*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith *//*     right-hand side. *//*     The second index in ERR_BNDS_COMP(:,err) contains the following *//*     three fields: *//*     err = 1 "Trust/don't trust" boolean. Trust the answer if the *//*              reciprocal condition number is less than the threshold *//*              sqrt(n) * dlamch('Epsilon'). *//*     err = 2 "Guaranteed" error bound: The estimated forward error, *//*              almost certainly within a factor of 10 of the true error *//*              so long as the next entry is greater than the threshold *//*              sqrt(n) * dlamch('Epsilon'). This error bound should only *//*              be trusted if the previous boolean is true. *//*     err = 3  Reciprocal condition number: Estimated componentwise *//*              reciprocal condition number.  Compared with the threshold *//*              sqrt(n) * dlamch('Epsilon') to determine if the error *//*              estimate is "guaranteed". These reciprocal condition *//*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *//*              appropriately scaled matrix Z. *//*              Let Z = S*(A*diag(x)), where x is the solution for the *//*              current right-hand side and S scales each row of *//*              A*diag(x) by a power of the radix so all absolute row *//*              sums of Z are approximately 1. *//*     See Lapack Working Note 165 for further details and extra *//*     cautions. *//*     NPARAMS (input) INTEGER *//*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the *//*     PARAMS array is never referenced and default values are used. *//*     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS *//*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then *//*     that entry will be filled with default value used for that *//*     parameter.  Only positions up to NPARAMS are accessed; defaults *//*     are used for higher-numbered parameters. *//*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *//*            refinement or not. *//*         Default: 1.0D+0 *//*            = 0.0 : No refinement is performed, and no error bounds are *//*                    computed. *//*            = 1.0 : Use the extra-precise refinement algorithm. *//*              (other values are reserved for future use) *//*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual *//*            computations allowed for refinement. *//*         Default: 10 *//*         Aggressive: Set to 100 to permit convergence using approximate *//*                     factorizations or factorizations other than LU. If *//*                     the factorization uses a technique other than *//*                     Gaussian elimination, the guarantees in *//*                     err_bnds_norm and err_bnds_comp may no longer be *//*                     trustworthy. *//*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code *//*            will attempt to find a solution with small componentwise *//*            relative error in the double-precision algorithm.  Positive *//*            is true, 0.0 is false. *//*         Default: 1.0 (attempt componentwise convergence) *//*     WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) *//*     IWORK   (workspace) INTEGER array, dimension (N) *//*     INFO    (output) INTEGER *//*       = 0:  Successful exit. The solution to every right-hand side is *//*         guaranteed. *//*       < 0:  If INFO = -i, the i-th argument had an illegal value *//*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization *//*         has been completed, but the factor U is exactly singular, so *//*         the solution and error bounds could not be computed. RCOND = 0 *//*         is returned. *//*       = N+J: The solution corresponding to the Jth right-hand side is *//*         not guaranteed. The solutions corresponding to other right- *//*         hand sides K with K > J may not be guaranteed as well, but *//*         only the first such right-hand side is reported. If a small *//*         componentwise error is not requested (PARAMS(3) = 0.0) then *//*         the Jth right-hand side is the first with a normwise error *//*         bound that is not guaranteed (the smallest J such *//*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) *//*         the Jth right-hand side is the first with either a normwise or *//*         componentwise error bound that is not guaranteed (the smallest *//*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or *//*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of *//*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information *//*         about all of the right-hand sides check ERR_BNDS_NORM or *//*         ERR_BNDS_COMP. *//*     ================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    err_bnds_comp_dim1 = *nrhs;    err_bnds_comp_offset = 1 + err_bnds_comp_dim1;    err_bnds_comp__ -= err_bnds_comp_offset;    err_bnds_norm_dim1 = *nrhs;    err_bnds_norm_offset = 1 + err_bnds_norm_dim1;    err_bnds_norm__ -= err_bnds_norm_offset;    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    afb_dim1 = *ldafb;    afb_offset = 1 + afb_dim1;    afb -= afb_offset;    --ipiv;    --r__;    --c__;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --berr;    --params;    --work;    --iwork;    /* Function Body */    *info = 0;    nofact = lsame_(fact, "N");    equil = lsame_(fact, "E");    notran = lsame_(trans, "N");    smlnum = dlamch_("Safe minimum");    bignum = 1. / smlnum;    if (nofact || equil) {	*(unsigned char *)equed = 'N';	rowequ = FALSE_;	colequ = FALSE_;    } else {	rowequ = lsame_(equed, "R") || lsame_(equed, 		"B");	colequ = lsame_(equed, "C") || lsame_(equed, 		"B");    }/*     Default is failure.  If an input parameter is wrong or *//*     factorization fails, make everything look horrible.  Only the *//*     pivot growth is set here, the rest is initialized in DGBRFSX. */    *rpvgrw = 0.;/*     Test the input parameters.  PARAMS is not tested until DGBRFSX. */    if (! nofact && ! equil && ! lsame_(fact, "F")) {	*info = -1;    } else if (! notran && ! lsame_(trans, "T") && ! 	    lsame_(trans, "C")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*kl < 0) {	*info = -4;    } else if (*ku < 0) {	*info = -5;    } else if (*nrhs < 0) {	*info = -6;    } else if (*ldab < *kl + *ku + 1) {	*info = -8;    } else if (*ldafb < (*kl << 1) + *ku + 1) {	*info = -10;    } else if (lsame_(fact, "F") && ! (rowequ || colequ 	    || lsame_(equed, "N"))) {	*info = -12;    } else {	if (rowequ) {	    rcmin = bignum;	    rcmax = 0.;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {/* Computing MIN */		d__1 = rcmin, d__2 = r__[j];		rcmin = min(d__1,d__2);/* Computing MAX */		d__1 = rcmax, d__2 = r__[j];		rcmax = max(d__1,d__2);/* L10: */	    }	    if (rcmin <= 0.) {		*info = -13;	    } else if (*n > 0) {		rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);	    } else {		rowcnd = 1.;	    }	}	if (colequ && *info == 0) {	    rcmin = bignum;	    rcmax = 0.;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {/* Computing MIN */		d__1 = rcmin, d__2 = c__[j];		rcmin = min(d__1,d__2);/* Computing MAX */		d__1 = rcmax, d__2 = c__[j];		rcmax = max(d__1,d__2);/* L20: */	    }	    if (rcmin <= 0.) {		*info = -14;	    } else if (*n > 0) {		colcnd = max(rcmin,smlnum) / min(rcmax,bignum);	    } else {		colcnd = 1.;	    }	}	if (*info == 0) {	    if (*ldb < max(1,*n)) {		*info = -15;	    } else if (*ldx < max(1,*n)) {		*info = -16;	    }	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGBSVXX", &i__1);	return 0;    }    if (equil) {/*     Compute row and column scalings to equilibrate the matrix A. */	dgbequb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &		rowcnd, &colcnd, &amax, &infequ);	if (infequ == 0) {/*     Equilibrate the matrix. */	    dlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &		    rowcnd, &colcnd, &amax, equed);	    rowequ = lsame_(equed, "R") || lsame_(equed, 		     "B");	    colequ = lsame_(equed, "C") || lsame_(equed, 		     "B");	}/*     If the scaling factors are not applied, set them to 1.0. */	if (! rowequ) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		r__[j] = 1.;	    }	}	if (! colequ) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		c__[j] = 1.;	    }	}    }/*     Scale the right hand side. */    if (notran) {	if (rowequ) {	    dlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);	}    } else {	if (colequ) {	    dlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);	}    }    if (nofact || equil) {/*        Compute the LU factorization of A. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__2 = (*kl << 1) + *ku + 1;	    for (i__ = *kl + 1; i__ <= i__2; ++i__) {		afb[i__ + j * afb_dim1] = ab[i__ - *kl + j * ab_dim1];/* L30: */	    }/* L40: */	}	dgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);/*        Return if INFO is non-zero. */	if (*info > 0) {/*           Pivot in column INFO is exactly 0 *//*           Compute the reciprocal pivot growth factor of the *//*           leading rank-deficient INFO columns of A. */	    *rpvgrw = dla_gbrpvgrw__(n, kl, ku, info, &ab[ab_offset], ldab, &		    afb[afb_offset], ldafb);	    return 0;	}    }/*     Compute the reciprocal pivot growth factor RPVGRW. */    *rpvgrw = dla_gbrpvgrw__(n, kl, ku, n, &ab[ab_offset], ldab, &afb[	    afb_offset], ldafb);/*     Compute the solution matrix X. */    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    dgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[	    x_offset], ldx, info);/*     Use iterative refinement to improve the computed solution and *//*     compute error bounds and backward error estimates for it. */    dgbrfsx_(trans, equed, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[	    afb_offset], ldafb, &ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, 	     &x[x_offset], ldx, rcond, &berr[1], n_err_bnds__, &	    err_bnds_norm__[err_bnds_norm_offset], &err_bnds_comp__[	    err_bnds_comp_offset], nparams, ¶ms[1], &work[1], &iwork[1], 	    info);/*     Scale solutions. */    if (colequ && notran) {	dlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);    } else if (rowequ && ! notran) {	dlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);    }    return 0;/*     End of DGBSVXX */} /* dgbsvxx_ */
 |