| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | /* dgbsv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dgbsv_(integer *n, integer *kl, integer *ku, integer *	nrhs, doublereal *ab, integer *ldab, integer *ipiv, doublereal *b, 	integer *ldb, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;    /* Local variables */    extern /* Subroutine */ int dgbtrf_(integer *, integer *, integer *, 	    integer *, doublereal *, integer *, integer *, integer *), 	    xerbla_(char *, integer *), dgbtrs_(char *, integer *, 	    integer *, integer *, integer *, doublereal *, integer *, integer 	    *, doublereal *, integer *, integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGBSV computes the solution to a real system of linear equations *//*  A * X = B, where A is a band matrix of order N with KL subdiagonals *//*  and KU superdiagonals, and X and B are N-by-NRHS matrices. *//*  The LU decomposition with partial pivoting and row interchanges is *//*  used to factor A as A = L * U, where L is a product of permutation *//*  and unit lower triangular matrices with KL subdiagonals, and U is *//*  upper triangular with KL+KU superdiagonals.  The factored form of A *//*  is then used to solve the system of equations A * X = B. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  KL      (input) INTEGER *//*          The number of subdiagonals within the band of A.  KL >= 0. *//*  KU      (input) INTEGER *//*          The number of superdiagonals within the band of A.  KU >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) *//*          On entry, the matrix A in band storage, in rows KL+1 to *//*          2*KL+KU+1; rows 1 to KL of the array need not be set. *//*          The j-th column of A is stored in the j-th column of the *//*          array AB as follows: *//*          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) *//*          On exit, details of the factorization: U is stored as an *//*          upper triangular band matrix with KL+KU superdiagonals in *//*          rows 1 to KL+KU+1, and the multipliers used during the *//*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. *//*          See below for further details. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. *//*  IPIV    (output) INTEGER array, dimension (N) *//*          The pivot indices that define the permutation matrix P; *//*          row i of the matrix was interchanged with row IPIV(i). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N-by-NRHS right hand side matrix B. *//*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization *//*                has been completed, but the factor U is exactly *//*                singular, and the solution has not been computed. *//*  Further Details *//*  =============== *//*  The band storage scheme is illustrated by the following example, when *//*  M = N = 6, KL = 2, KU = 1: *//*  On entry:                       On exit: *//*      *    *    *    +    +    +       *    *    *   u14  u25  u36 *//*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 *//*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 *//*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 *//*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * *//*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * *//*  Array elements marked * are not used by the routine; elements marked *//*  + need not be set on entry, but are required by the routine to store *//*  elements of U because of fill-in resulting from the row interchanges. *//*  ===================================================================== *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*kl < 0) {	*info = -2;    } else if (*ku < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*ldab < (*kl << 1) + *ku + 1) {	*info = -6;    } else if (*ldb < max(*n,1)) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGBSV ", &i__1);	return 0;    }/*     Compute the LU factorization of the band matrix A. */    dgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);    if (*info == 0) {/*        Solve the system A*X = B, overwriting B with X. */	dgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[		1], &b[b_offset], ldb, info);    }    return 0;/*     End of DGBSV */} /* dgbsv_ */
 |