| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 | /* dgemv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int dgemv_(char *trans, integer *m, integer *n, doublereal *	alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, 	doublereal *beta, doublereal *y, integer *incy){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    /* Local variables */    integer i__, j, ix, iy, jx, jy, kx, ky, info;    doublereal temp;    integer lenx, leny;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int xerbla_(char *, integer *);/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEMV  performs one of the matrix-vector operations *//*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y, *//*  where alpha and beta are scalars, x and y are vectors and A is an *//*  m by n matrix. *//*  Arguments *//*  ========== *//*  TRANS  - CHARACTER*1. *//*           On entry, TRANS specifies the operation to be performed as *//*           follows: *//*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y. *//*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y. *//*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y. *//*           Unchanged on exit. *//*  M      - INTEGER. *//*           On entry, M specifies the number of rows of the matrix A. *//*           M must be at least zero. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the number of columns of the matrix A. *//*           N must be at least zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). *//*           Before entry, the leading m by n part of the array A must *//*           contain the matrix of coefficients. *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program. LDA must be at least *//*           max( 1, m ). *//*           Unchanged on exit. *//*  X      - DOUBLE PRECISION array of DIMENSION at least *//*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' *//*           and at least *//*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. *//*           Before entry, the incremented array X must contain the *//*           vector x. *//*           Unchanged on exit. *//*  INCX   - INTEGER. *//*           On entry, INCX specifies the increment for the elements of *//*           X. INCX must not be zero. *//*           Unchanged on exit. *//*  BETA   - DOUBLE PRECISION. *//*           On entry, BETA specifies the scalar beta. When BETA is *//*           supplied as zero then Y need not be set on input. *//*           Unchanged on exit. *//*  Y      - DOUBLE PRECISION array of DIMENSION at least *//*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' *//*           and at least *//*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. *//*           Before entry with BETA non-zero, the incremented array Y *//*           must contain the vector y. On exit, Y is overwritten by the *//*           updated vector y. *//*  INCY   - INTEGER. *//*           On entry, INCY specifies the increment for the elements of *//*           Y. INCY must not be zero. *//*           Unchanged on exit. *//*  Level 2 Blas routine. *//*  -- Written on 22-October-1986. *//*     Jack Dongarra, Argonne National Lab. *//*     Jeremy Du Croz, Nag Central Office. *//*     Sven Hammarling, Nag Central Office. *//*     Richard Hanson, Sandia National Labs. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --x;    --y;    /* Function Body */    info = 0;    if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")	    ) {	info = 1;    } else if (*m < 0) {	info = 2;    } else if (*n < 0) {	info = 3;    } else if (*lda < max(1,*m)) {	info = 6;    } else if (*incx == 0) {	info = 8;    } else if (*incy == 0) {	info = 11;    }    if (info != 0) {	xerbla_("DGEMV ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {	return 0;    }/*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set *//*     up the start points in  X  and  Y. */    if (lsame_(trans, "N")) {	lenx = *n;	leny = *m;    } else {	lenx = *m;	leny = *n;    }    if (*incx > 0) {	kx = 1;    } else {	kx = 1 - (lenx - 1) * *incx;    }    if (*incy > 0) {	ky = 1;    } else {	ky = 1 - (leny - 1) * *incy;    }/*     Start the operations. In this version the elements of A are *//*     accessed sequentially with one pass through A. *//*     First form  y := beta*y. */    if (*beta != 1.) {	if (*incy == 1) {	    if (*beta == 0.) {		i__1 = leny;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[i__] = 0.;/* L10: */		}	    } else {		i__1 = leny;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[i__] = *beta * y[i__];/* L20: */		}	    }	} else {	    iy = ky;	    if (*beta == 0.) {		i__1 = leny;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[iy] = 0.;		    iy += *incy;/* L30: */		}	    } else {		i__1 = leny;		for (i__ = 1; i__ <= i__1; ++i__) {		    y[iy] = *beta * y[iy];		    iy += *incy;/* L40: */		}	    }	}    }    if (*alpha == 0.) {	return 0;    }    if (lsame_(trans, "N")) {/*        Form  y := alpha*A*x + y. */	jx = kx;	if (*incy == 1) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (x[jx] != 0.) {		    temp = *alpha * x[jx];		    i__2 = *m;		    for (i__ = 1; i__ <= i__2; ++i__) {			y[i__] += temp * a[i__ + j * a_dim1];/* L50: */		    }		}		jx += *incx;/* L60: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (x[jx] != 0.) {		    temp = *alpha * x[jx];		    iy = ky;		    i__2 = *m;		    for (i__ = 1; i__ <= i__2; ++i__) {			y[iy] += temp * a[i__ + j * a_dim1];			iy += *incy;/* L70: */		    }		}		jx += *incx;/* L80: */	    }	}    } else {/*        Form  y := alpha*A'*x + y. */	jy = ky;	if (*incx == 1) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		temp = 0.;		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    temp += a[i__ + j * a_dim1] * x[i__];/* L90: */		}		y[jy] += *alpha * temp;		jy += *incy;/* L100: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		temp = 0.;		ix = kx;		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    temp += a[i__ + j * a_dim1] * x[ix];		    ix += *incx;/* L110: */		}		y[jy] += *alpha * temp;		jy += *incy;/* L120: */	    }	}    }    return 0;/*     End of DGEMV . */} /* dgemv_ */
 |