mpi_cholesky.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include <starpu_mpi.h>
  19. #include "mpi_cholesky.h"
  20. #include "mpi_cholesky_models.h"
  21. /*
  22. * Create the codelets
  23. */
  24. static struct starpu_codelet cl11 =
  25. {
  26. .where = STARPU_CPU|STARPU_CUDA,
  27. .cpu_funcs = {chol_cpu_codelet_update_u11, NULL},
  28. #ifdef STARPU_USE_CUDA
  29. .cuda_funcs = {chol_cublas_codelet_update_u11, NULL},
  30. #endif
  31. .nbuffers = 1,
  32. .modes = {STARPU_RW},
  33. .model = &chol_model_11
  34. };
  35. static struct starpu_codelet cl21 =
  36. {
  37. .where = STARPU_CPU|STARPU_CUDA,
  38. .cpu_funcs = {chol_cpu_codelet_update_u21, NULL},
  39. #ifdef STARPU_USE_CUDA
  40. .cuda_funcs = {chol_cublas_codelet_update_u21, NULL},
  41. #endif
  42. .nbuffers = 2,
  43. .modes = {STARPU_R, STARPU_RW},
  44. .model = &chol_model_21
  45. };
  46. static struct starpu_codelet cl22 =
  47. {
  48. .where = STARPU_CPU|STARPU_CUDA,
  49. .cpu_funcs = {chol_cpu_codelet_update_u22, NULL},
  50. #ifdef STARPU_USE_CUDA
  51. .cuda_funcs = {chol_cublas_codelet_update_u22, NULL},
  52. #endif
  53. .nbuffers = 3,
  54. .modes = {STARPU_R, STARPU_R, STARPU_RW},
  55. .model = &chol_model_22
  56. };
  57. /* Returns the MPI node number where data indexes index is */
  58. int my_distrib(int x, int y, int nb_nodes)
  59. {
  60. return (x+y) % nb_nodes;
  61. }
  62. /*
  63. * code to bootstrap the factorization
  64. * and construct the DAG
  65. */
  66. static void dw_cholesky(float ***matA, unsigned size, unsigned ld, unsigned nblocks, int rank, int nodes)
  67. {
  68. struct timeval start;
  69. struct timeval end;
  70. starpu_data_handle_t **data_handles;
  71. int x, y;
  72. /* create all the DAG nodes */
  73. unsigned i,j,k;
  74. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  75. for(x=0 ; x<nblocks ; x++) data_handles[x] = malloc(nblocks*sizeof(starpu_data_handle_t));
  76. for(x = 0; x < nblocks ; x++)
  77. {
  78. for (y = 0; y < nblocks; y++)
  79. {
  80. int mpi_rank = my_distrib(x, y, nodes);
  81. if (mpi_rank == rank)
  82. {
  83. //fprintf(stderr, "[%d] Owning data[%d][%d]\n", rank, x, y);
  84. starpu_matrix_data_register(&data_handles[x][y], 0, (uintptr_t)matA[x][y],
  85. ld, size/nblocks, size/nblocks, sizeof(float));
  86. }
  87. /* TODO: make better test to only registering what is needed */
  88. else
  89. {
  90. /* I don't own that index, but will need it for my computations */
  91. //fprintf(stderr, "[%d] Neighbour of data[%d][%d]\n", rank, x, y);
  92. starpu_matrix_data_register(&data_handles[x][y], -1, (uintptr_t)NULL,
  93. ld, size/nblocks, size/nblocks, sizeof(float));
  94. }
  95. if (data_handles[x][y])
  96. {
  97. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  98. starpu_data_set_tag(data_handles[x][y], (y*nblocks)+x);
  99. }
  100. }
  101. }
  102. starpu_mpi_barrier(MPI_COMM_WORLD);
  103. gettimeofday(&start, NULL);
  104. for (k = 0; k < nblocks; k++)
  105. {
  106. int prio = STARPU_DEFAULT_PRIO;
  107. if (!noprio) prio = STARPU_MAX_PRIO;
  108. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl11,
  109. STARPU_PRIORITY, prio,
  110. STARPU_RW, data_handles[k][k],
  111. 0);
  112. for (j = k+1; j<nblocks; j++)
  113. {
  114. prio = STARPU_DEFAULT_PRIO;
  115. if (!noprio&& (j == k+1)) prio = STARPU_MAX_PRIO;
  116. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl21,
  117. STARPU_PRIORITY, prio,
  118. STARPU_R, data_handles[k][k],
  119. STARPU_RW, data_handles[k][j],
  120. 0);
  121. for (i = k+1; i<nblocks; i++)
  122. {
  123. if (i <= j)
  124. {
  125. prio = STARPU_DEFAULT_PRIO;
  126. if (!noprio && (i == k + 1) && (j == k +1) ) prio = STARPU_MAX_PRIO;
  127. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl22,
  128. STARPU_PRIORITY, prio,
  129. STARPU_R, data_handles[k][i],
  130. STARPU_R, data_handles[k][j],
  131. STARPU_RW, data_handles[i][j],
  132. 0);
  133. }
  134. }
  135. }
  136. }
  137. starpu_task_wait_for_all();
  138. for(x = 0; x < nblocks ; x++)
  139. {
  140. for (y = 0; y < nblocks; y++)
  141. {
  142. if (data_handles[x][y])
  143. starpu_data_unregister(data_handles[x][y]);
  144. }
  145. free(data_handles[x]);
  146. }
  147. free(data_handles);
  148. starpu_mpi_barrier(MPI_COMM_WORLD);
  149. gettimeofday(&end, NULL);
  150. if (rank == 0)
  151. {
  152. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  153. fprintf(stderr, "Computation took (in ms)\n");
  154. fprintf(stdout, "%2.2f\n", timing/1000);
  155. double flop = (1.0f*size*size*size)/3.0f;
  156. fprintf(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  157. }
  158. }
  159. int main(int argc, char **argv)
  160. {
  161. /* create a simple definite positive symetric matrix example
  162. *
  163. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  164. * */
  165. float ***bmat;
  166. int rank, nodes;
  167. parse_args(argc, argv);
  168. struct starpu_conf conf;
  169. starpu_conf_init(&conf);
  170. conf.sched_policy_name = "heft";
  171. conf.calibrate = 1;
  172. int ret = starpu_init(&conf);
  173. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  174. starpu_mpi_initialize_extended(&rank, &nodes);
  175. starpu_helper_cublas_init();
  176. unsigned i,j,x,y;
  177. bmat = malloc(nblocks * sizeof(float *));
  178. for(x=0 ; x<nblocks ; x++)
  179. {
  180. bmat[x] = malloc(nblocks * sizeof(float *));
  181. for(y=0 ; y<nblocks ; y++)
  182. {
  183. starpu_malloc((void **)&bmat[x][y], BLOCKSIZE*BLOCKSIZE*sizeof(float));
  184. for (i = 0; i < BLOCKSIZE; i++)
  185. {
  186. for (j = 0; j < BLOCKSIZE; j++)
  187. {
  188. bmat[x][y][j +i*BLOCKSIZE] = (1.0f/(1.0f+(i+(x*BLOCKSIZE)+j+(y*BLOCKSIZE)))) + ((i+(x*BLOCKSIZE) == j+(y*BLOCKSIZE))?1.0f*size:0.0f);
  189. //mat[j +i*size] = ((i == j)?1.0f*size:0.0f);
  190. }
  191. }
  192. }
  193. }
  194. if (display)
  195. {
  196. printf("[%d] Input :\n", rank);
  197. for(y=0 ; y<nblocks ; y++)
  198. {
  199. for(x=0 ; x<nblocks ; x++)
  200. {
  201. printf("Block %d,%d :\n", x, y);
  202. for (j = 0; j < BLOCKSIZE; j++)
  203. {
  204. for (i = 0; i < BLOCKSIZE; i++)
  205. {
  206. if (i <= j)
  207. {
  208. printf("%2.2f\t", bmat[y][x][j +i*BLOCKSIZE]);
  209. }
  210. else
  211. {
  212. printf(".\t");
  213. }
  214. }
  215. printf("\n");
  216. }
  217. }
  218. }
  219. }
  220. dw_cholesky(bmat, size, size/nblocks, nblocks, rank, nodes);
  221. starpu_mpi_shutdown();
  222. if (display)
  223. {
  224. printf("[%d] Results :\n", rank);
  225. for(y=0 ; y<nblocks ; y++)
  226. {
  227. for(x=0 ; x<nblocks ; x++)
  228. {
  229. printf("Block %d,%d :\n", x, y);
  230. for (j = 0; j < BLOCKSIZE; j++)
  231. {
  232. for (i = 0; i < BLOCKSIZE; i++)
  233. {
  234. if (i <= j)
  235. {
  236. printf("%2.2f\t", bmat[y][x][j +i*BLOCKSIZE]);
  237. }
  238. else
  239. {
  240. printf(".\t");
  241. }
  242. }
  243. printf("\n");
  244. }
  245. }
  246. }
  247. }
  248. float *rmat = malloc(size*size*sizeof(float));
  249. for(x=0 ; x<nblocks ; x++)
  250. {
  251. for(y=0 ; y<nblocks ; y++)
  252. {
  253. for (i = 0; i < BLOCKSIZE; i++)
  254. {
  255. for (j = 0; j < BLOCKSIZE; j++)
  256. {
  257. rmat[j+(y*BLOCKSIZE)+(i+(x*BLOCKSIZE))*size] = bmat[x][y][j +i*BLOCKSIZE];
  258. }
  259. }
  260. }
  261. }
  262. fprintf(stderr, "[%d] compute explicit LLt ...\n", rank);
  263. for (j = 0; j < size; j++)
  264. {
  265. for (i = 0; i < size; i++)
  266. {
  267. if (i > j)
  268. {
  269. rmat[j+i*size] = 0.0f; // debug
  270. }
  271. }
  272. }
  273. float *test_mat = malloc(size*size*sizeof(float));
  274. STARPU_ASSERT(test_mat);
  275. SSYRK("L", "N", size, size, 1.0f,
  276. rmat, size, 0.0f, test_mat, size);
  277. fprintf(stderr, "[%d] comparing results ...\n", rank);
  278. if (display)
  279. {
  280. for (j = 0; j < size; j++)
  281. {
  282. for (i = 0; i < size; i++)
  283. {
  284. if (i <= j)
  285. {
  286. printf("%2.2f\t", test_mat[j +i*size]);
  287. }
  288. else
  289. {
  290. printf(".\t");
  291. }
  292. }
  293. printf("\n");
  294. }
  295. }
  296. int correctness = 1;
  297. for(x = 0; x < nblocks ; x++)
  298. {
  299. for (y = 0; y < nblocks; y++)
  300. {
  301. int mpi_rank = my_distrib(x, y, nodes);
  302. if (mpi_rank == rank)
  303. {
  304. for (i = (size/nblocks)*x ; i < (size/nblocks)*x+(size/nblocks); i++)
  305. {
  306. for (j = (size/nblocks)*y ; j < (size/nblocks)*y+(size/nblocks); j++)
  307. {
  308. if (i <= j)
  309. {
  310. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  311. float err = abs(test_mat[j +i*size] - orig);
  312. if (err > 0.00001)
  313. {
  314. fprintf(stderr, "[%d] Error[%d, %d] --> %2.2f != %2.2f (err %2.2f)\n", rank, i, j, test_mat[j +i*size], orig, err);
  315. correctness = 0;
  316. break;
  317. }
  318. }
  319. }
  320. }
  321. }
  322. }
  323. }
  324. for(x=0 ; x<nblocks ; x++)
  325. {
  326. for(y=0 ; y<nblocks ; y++)
  327. {
  328. starpu_free((void *)bmat[x][y]);
  329. }
  330. free(bmat[x]);
  331. }
  332. free(bmat);
  333. free(rmat);
  334. free(test_mat);
  335. starpu_helper_cublas_shutdown();
  336. starpu_shutdown();
  337. assert(correctness);
  338. return 0;
  339. }