lu_example.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. /*
  2. * StarPU
  3. * Copyright (C) Université Bordeaux 1, CNRS 2008-2009 (see AUTHORS file)
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include <stdlib.h>
  17. #include <stdio.h>
  18. #include <string.h>
  19. #include <time.h>
  20. #include <math.h>
  21. #include <starpu.h>
  22. #include <starpu_profiling.h>
  23. #include "xlu.h"
  24. #include "xlu_kernels.h"
  25. static unsigned long size = 4096;
  26. static unsigned nblocks = 16;
  27. static unsigned check = 0;
  28. static unsigned pivot = 0;
  29. static unsigned no_stride = 0;
  30. static unsigned profile = 0;
  31. TYPE *A, *A_saved;
  32. /* in case we use non-strided blocks */
  33. TYPE **A_blocks;
  34. static void parse_args(int argc, char **argv)
  35. {
  36. int i;
  37. for (i = 1; i < argc; i++) {
  38. if (strcmp(argv[i], "-size") == 0) {
  39. char *argptr;
  40. size = strtol(argv[++i], &argptr, 10);
  41. }
  42. if (strcmp(argv[i], "-nblocks") == 0) {
  43. char *argptr;
  44. nblocks = strtol(argv[++i], &argptr, 10);
  45. }
  46. if (strcmp(argv[i], "-check") == 0) {
  47. check = 1;
  48. }
  49. if (strcmp(argv[i], "-piv") == 0) {
  50. pivot = 1;
  51. }
  52. if (strcmp(argv[i], "-no-stride") == 0) {
  53. no_stride = 1;
  54. }
  55. if (strcmp(argv[i], "-profile") == 0) {
  56. profile = 1;
  57. }
  58. }
  59. }
  60. static void display_matrix(TYPE *m, unsigned n, unsigned ld, char *str)
  61. {
  62. #if 0
  63. fprintf(stderr, "***********\n");
  64. fprintf(stderr, "Display matrix %s\n", str);
  65. unsigned i,j;
  66. for (j = 0; j < n; j++)
  67. {
  68. for (i = 0; i < n; i++)
  69. {
  70. fprintf(stderr, "%2.2f\t", m[i+j*ld]);
  71. }
  72. fprintf(stderr, "\n");
  73. }
  74. fprintf(stderr, "***********\n");
  75. #endif
  76. }
  77. void copy_blocks_into_matrix(void)
  78. {
  79. unsigned blocksize = (size/nblocks);
  80. unsigned i, j;
  81. unsigned bi, bj;
  82. for (bj = 0; bj < nblocks; bj++)
  83. for (bi = 0; bi < nblocks; bi++)
  84. {
  85. for (j = 0; j < blocksize; j++)
  86. for (i = 0; i < blocksize; i++)
  87. {
  88. A[(i+bi*blocksize) + (j + bj*blocksize)*size] =
  89. A_blocks[bi+nblocks*bj][i + j * blocksize];
  90. }
  91. //free(A_blocks[bi+nblocks*bj]);
  92. }
  93. }
  94. void copy_matrix_into_blocks(void)
  95. {
  96. unsigned blocksize = (size/nblocks);
  97. unsigned i, j;
  98. unsigned bi, bj;
  99. for (bj = 0; bj < nblocks; bj++)
  100. for (bi = 0; bi < nblocks; bi++)
  101. {
  102. starpu_data_malloc_pinned_if_possible((void **)&A_blocks[bi+nblocks*bj], (size_t)blocksize*blocksize*sizeof(TYPE));
  103. for (j = 0; j < blocksize; j++)
  104. for (i = 0; i < blocksize; i++)
  105. {
  106. A_blocks[bi+nblocks*bj][i + j * blocksize] =
  107. A[(i+bi*blocksize) + (j + bj*blocksize)*size];
  108. }
  109. }
  110. }
  111. static void init_matrix(void)
  112. {
  113. /* allocate matrix */
  114. starpu_data_malloc_pinned_if_possible((void **)&A, (size_t)size*size*sizeof(TYPE));
  115. STARPU_ASSERT(A);
  116. starpu_srand48((long int)time(NULL));
  117. //starpu_srand48(0);
  118. /* initialize matrix content */
  119. unsigned long i,j;
  120. for (j = 0; j < size; j++)
  121. {
  122. for (i = 0; i < size; i++)
  123. {
  124. A[i + j*size] = (TYPE)starpu_drand48();
  125. }
  126. }
  127. }
  128. static void save_matrix(void)
  129. {
  130. A_saved = malloc((size_t)size*size*sizeof(TYPE));
  131. STARPU_ASSERT(A_saved);
  132. memcpy(A_saved, A, (size_t)size*size*sizeof(TYPE));
  133. }
  134. static double frobenius_norm(TYPE *v, unsigned n)
  135. {
  136. double sum2 = 0.0;
  137. /* compute sqrt(Sum(|x|^2)) */
  138. unsigned i,j;
  139. for (j = 0; j < n; j++)
  140. for (i = 0; i < n; i++)
  141. {
  142. double a = fabsl((double)v[i+n*j]);
  143. sum2 += a*a;
  144. }
  145. return sqrt(sum2);
  146. }
  147. static pivot_saved_matrix(unsigned *ipiv)
  148. {
  149. unsigned k;
  150. for (k = 0; k < size; k++)
  151. {
  152. if (k != ipiv[k])
  153. {
  154. // fprintf(stderr, "SWAP %d and %d\n", k, ipiv[k]);
  155. CPU_SWAP(size, &A_saved[k*size], 1, &A_saved[ipiv[k]*size], 1);
  156. }
  157. }
  158. }
  159. static void check_result(void)
  160. {
  161. unsigned i,j;
  162. TYPE *L, *U;
  163. L = malloc((size_t)size*size*sizeof(TYPE));
  164. U = malloc((size_t)size*size*sizeof(TYPE));
  165. memset(L, 0, size*size*sizeof(TYPE));
  166. memset(U, 0, size*size*sizeof(TYPE));
  167. /* only keep the lower part */
  168. for (j = 0; j < size; j++)
  169. {
  170. for (i = 0; i < j; i++)
  171. {
  172. L[j+i*size] = A[j+i*size];
  173. }
  174. /* diag i = j */
  175. L[j+j*size] = A[j+j*size];
  176. U[j+j*size] = 1.0;
  177. for (i = j+1; i < size; i++)
  178. {
  179. U[j+i*size] = A[j+i*size];
  180. }
  181. }
  182. display_matrix(L, size, size, "L");
  183. display_matrix(U, size, size, "U");
  184. /* now A_err = L, compute L*U */
  185. CPU_TRMM("R", "U", "N", "U", size, size, 1.0f, U, size, L, size);
  186. display_matrix(A_saved, size, size, "P A_saved");
  187. display_matrix(L, size, size, "LU");
  188. /* compute "LU - A" in L*/
  189. CPU_AXPY(size*size, -1.0, A_saved, 1, L, 1);
  190. display_matrix(L, size, size, "Residuals");
  191. TYPE err = CPU_ASUM(size*size, L, 1);
  192. int max = CPU_IAMAX(size*size, L, 1);
  193. fprintf(stderr, "Avg error : %e\n", err/(size*size));
  194. fprintf(stderr, "Max error : %e\n", L[max]);
  195. double residual = frobenius_norm(L, size);
  196. double matnorm = frobenius_norm(A_saved, size);
  197. fprintf(stderr, "||%sA-LU|| / (||A||*N) : %e\n", pivot?"P":"", residual/(matnorm*size));
  198. if (residual/(matnorm*size) > 1e-5)
  199. exit(-1);
  200. }
  201. int main(int argc, char **argv)
  202. {
  203. parse_args(argc, argv);
  204. starpu_init(NULL);
  205. starpu_helper_cublas_init();
  206. init_matrix();
  207. unsigned *ipiv;
  208. if (check)
  209. save_matrix();
  210. display_matrix(A, size, size, "A");
  211. if (profile)
  212. starpu_profiling_status_set(STARPU_PROFILING_ENABLE);
  213. /* Factorize the matrix (in place) */
  214. if (pivot)
  215. {
  216. ipiv = malloc(size*sizeof(unsigned));
  217. if (no_stride)
  218. {
  219. /* in case the LU decomposition uses non-strided blocks, we _copy_ the matrix into smaller blocks */
  220. A_blocks = malloc(nblocks*nblocks*sizeof(TYPE **));
  221. copy_matrix_into_blocks();
  222. STARPU_LU(lu_decomposition_pivot_no_stride)(A_blocks, ipiv, size, size, nblocks);
  223. copy_blocks_into_matrix();
  224. free(A_blocks);
  225. }
  226. else
  227. {
  228. struct timeval start;
  229. struct timeval end;
  230. gettimeofday(&start, NULL);
  231. STARPU_LU(lu_decomposition_pivot)(A, ipiv, size, size, nblocks);
  232. gettimeofday(&end, NULL);
  233. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  234. unsigned n = size;
  235. double flop = (2.0f*n*n*n)/3.0f;
  236. fprintf(stderr, "Synthetic GFlops (TOTAL) : \n");
  237. fprintf(stdout, "%d %6.2f\n", n, (flop/timing/1000.0f));
  238. }
  239. }
  240. else
  241. {
  242. STARPU_LU(lu_decomposition)(A, size, size, nblocks);
  243. }
  244. if (profile)
  245. {
  246. starpu_profiling_status_set(STARPU_PROFILING_DISABLE);
  247. starpu_bus_profiling_helper_display_summary();
  248. }
  249. if (check)
  250. {
  251. if (pivot)
  252. pivot_saved_matrix(ipiv);
  253. check_result();
  254. }
  255. starpu_helper_cublas_shutdown();
  256. starpu_shutdown();
  257. return 0;
  258. }