| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696 | 
							- /* dtgsna.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b19 = 1.;
 
- static doublereal c_b21 = 0.;
 
- static integer c__2 = 2;
 
- static logical c_false = FALSE_;
 
- static integer c__3 = 3;
 
- /* Subroutine */ int _starpu_dtgsna_(char *job, char *howmny, logical *select, 
 
- 	integer *n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 
 
- 	doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, 
 
- 	doublereal *s, doublereal *dif, integer *mm, integer *m, doublereal *
 
- 	work, integer *lwork, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 
- 	    vr_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, k;
 
-     doublereal c1, c2;
 
-     integer n1, n2, ks, iz;
 
-     doublereal eps, beta, cond;
 
-     extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     logical pair;
 
-     integer ierr;
 
-     doublereal uhav, uhbv;
 
-     integer ifst;
 
-     doublereal lnrm;
 
-     integer ilst;
 
-     doublereal rnrm;
 
-     extern /* Subroutine */ int _starpu_dlag2_(doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, doublereal *);
 
-     extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
 
-     doublereal root1, root2, scale;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     doublereal uhavi, uhbvi, tmpii;
 
-     integer lwmin;
 
-     logical wants;
 
-     doublereal tmpir, tmpri, dummy[1], tmprr;
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
 
-     doublereal dummy1[1];
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     doublereal alphai, alphar;
 
-     extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_xerbla_(char *, integer *), _starpu_dtgexc_(logical *, logical *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     logical wantbh, wantdf, somcon;
 
-     doublereal alprqt;
 
-     extern /* Subroutine */ int _starpu_dtgsyl_(char *, integer *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *, integer *);
 
-     doublereal smlnum;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTGSNA estimates reciprocal condition numbers for specified */
 
- /*  eigenvalues and/or eigenvectors of a matrix pair (A, B) in */
 
- /*  generalized real Schur canonical form (or of any matrix pair */
 
- /*  (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where */
 
- /*  Z' denotes the transpose of Z. */
 
- /*  (A, B) must be in generalized real Schur form (as returned by DGGES), */
 
- /*  i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */
 
- /*  blocks. B is upper triangular. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOB     (input) CHARACTER*1 */
 
- /*          Specifies whether condition numbers are required for */
 
- /*          eigenvalues (S) or eigenvectors (DIF): */
 
- /*          = 'E': for eigenvalues only (S); */
 
- /*          = 'V': for eigenvectors only (DIF); */
 
- /*          = 'B': for both eigenvalues and eigenvectors (S and DIF). */
 
- /*  HOWMNY  (input) CHARACTER*1 */
 
- /*          = 'A': compute condition numbers for all eigenpairs; */
 
- /*          = 'S': compute condition numbers for selected eigenpairs */
 
- /*                 specified by the array SELECT. */
 
- /*  SELECT  (input) LOGICAL array, dimension (N) */
 
- /*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
 
- /*          condition numbers are required. To select condition numbers */
 
- /*          for the eigenpair corresponding to a real eigenvalue w(j), */
 
- /*          SELECT(j) must be set to .TRUE.. To select condition numbers */
 
- /*          corresponding to a complex conjugate pair of eigenvalues w(j) */
 
- /*          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
 
- /*          set to .TRUE.. */
 
- /*          If HOWMNY = 'A', SELECT is not referenced. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the square matrix pair (A, B). N >= 0. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          The upper quasi-triangular matrix A in the pair (A,B). */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,N). */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,N) */
 
- /*          The upper triangular matrix B in the pair (A,B). */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,N). */
 
- /*  VL      (input) DOUBLE PRECISION array, dimension (LDVL,M) */
 
- /*          If JOB = 'E' or 'B', VL must contain left eigenvectors of */
 
- /*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
 
- /*          and SELECT. The eigenvectors must be stored in consecutive */
 
- /*          columns of VL, as returned by DTGEVC. */
 
- /*          If JOB = 'V', VL is not referenced. */
 
- /*  LDVL    (input) INTEGER */
 
- /*          The leading dimension of the array VL. LDVL >= 1. */
 
- /*          If JOB = 'E' or 'B', LDVL >= N. */
 
- /*  VR      (input) DOUBLE PRECISION array, dimension (LDVR,M) */
 
- /*          If JOB = 'E' or 'B', VR must contain right eigenvectors of */
 
- /*          (A, B), corresponding to the eigenpairs specified by HOWMNY */
 
- /*          and SELECT. The eigenvectors must be stored in consecutive */
 
- /*          columns ov VR, as returned by DTGEVC. */
 
- /*          If JOB = 'V', VR is not referenced. */
 
- /*  LDVR    (input) INTEGER */
 
- /*          The leading dimension of the array VR. LDVR >= 1. */
 
- /*          If JOB = 'E' or 'B', LDVR >= N. */
 
- /*  S       (output) DOUBLE PRECISION array, dimension (MM) */
 
- /*          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
 
- /*          selected eigenvalues, stored in consecutive elements of the */
 
- /*          array. For a complex conjugate pair of eigenvalues two */
 
- /*          consecutive elements of S are set to the same value. Thus */
 
- /*          S(j), DIF(j), and the j-th columns of VL and VR all */
 
- /*          correspond to the same eigenpair (but not in general the */
 
- /*          j-th eigenpair, unless all eigenpairs are selected). */
 
- /*          If JOB = 'V', S is not referenced. */
 
- /*  DIF     (output) DOUBLE PRECISION array, dimension (MM) */
 
- /*          If JOB = 'V' or 'B', the estimated reciprocal condition */
 
- /*          numbers of the selected eigenvectors, stored in consecutive */
 
- /*          elements of the array. For a complex eigenvector two */
 
- /*          consecutive elements of DIF are set to the same value. If */
 
- /*          the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */
 
- /*          is set to 0; this can only occur when the true value would be */
 
- /*          very small anyway. */
 
- /*          If JOB = 'E', DIF is not referenced. */
 
- /*  MM      (input) INTEGER */
 
- /*          The number of elements in the arrays S and DIF. MM >= M. */
 
- /*  M       (output) INTEGER */
 
- /*          The number of elements of the arrays S and DIF used to store */
 
- /*          the specified condition numbers; for each selected real */
 
- /*          eigenvalue one element is used, and for each selected complex */
 
- /*          conjugate pair of eigenvalues, two elements are used. */
 
- /*          If HOWMNY = 'A', M is set to N. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >= max(1,N). */
 
- /*          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N + 6) */
 
- /*          If JOB = 'E', IWORK is not referenced. */
 
- /*  INFO    (output) INTEGER */
 
- /*          =0: Successful exit */
 
- /*          <0: If INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The reciprocal of the condition number of a generalized eigenvalue */
 
- /*  w = (a, b) is defined as */
 
- /*       S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v)) */
 
- /*  where u and v are the left and right eigenvectors of (A, B) */
 
- /*  corresponding to w; |z| denotes the absolute value of the complex */
 
- /*  number, and norm(u) denotes the 2-norm of the vector u. */
 
- /*  The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv) */
 
- /*  of the matrix pair (A, B). If both a and b equal zero, then (A B) is */
 
- /*  singular and S(I) = -1 is returned. */
 
- /*  An approximate error bound on the chordal distance between the i-th */
 
- /*  computed generalized eigenvalue w and the corresponding exact */
 
- /*  eigenvalue lambda is */
 
- /*       chord(w, lambda) <= EPS * norm(A, B) / S(I) */
 
- /*  where EPS is the machine precision. */
 
- /*  The reciprocal of the condition number DIF(i) of right eigenvector u */
 
- /*  and left eigenvector v corresponding to the generalized eigenvalue w */
 
- /*  is defined as follows: */
 
- /*  a) If the i-th eigenvalue w = (a,b) is real */
 
- /*     Suppose U and V are orthogonal transformations such that */
 
- /*                U'*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1 */
 
- /*                                        ( 0  S22 ),( 0 T22 )  n-1 */
 
- /*                                          1  n-1     1 n-1 */
 
- /*     Then the reciprocal condition number DIF(i) is */
 
- /*                Difl((a, b), (S22, T22)) = sigma-min( Zl ), */
 
- /*     where sigma-min(Zl) denotes the smallest singular value of the */
 
- /*     2(n-1)-by-2(n-1) matrix */
 
- /*         Zl = [ kron(a, In-1)  -kron(1, S22) ] */
 
- /*              [ kron(b, In-1)  -kron(1, T22) ] . */
 
- /*     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */
 
- /*     Kronecker product between the matrices X and Y. */
 
- /*     Note that if the default method for computing DIF(i) is wanted */
 
- /*     (see DLATDF), then the parameter DIFDRI (see below) should be */
 
- /*     changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). */
 
- /*     See DTGSYL for more details. */
 
- /*  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */
 
- /*     Suppose U and V are orthogonal transformations such that */
 
- /*                U'*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2 */
 
- /*                                       ( 0    S22 ),( 0    T22) n-2 */
 
- /*                                         2    n-2     2    n-2 */
 
- /*     and (S11, T11) corresponds to the complex conjugate eigenvalue */
 
- /*     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */
 
- /*     that */
 
- /*         U1'*S11*V1 = ( s11 s12 )   and U1'*T11*V1 = ( t11 t12 ) */
 
- /*                      (  0  s22 )                    (  0  t22 ) */
 
- /*     where the generalized eigenvalues w = s11/t11 and */
 
- /*     conjg(w) = s22/t22. */
 
- /*     Then the reciprocal condition number DIF(i) is bounded by */
 
- /*         min( d1, max( 1, |real(s11)/real(s22)| )*d2 ) */
 
- /*     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where */
 
- /*     Z1 is the complex 2-by-2 matrix */
 
- /*              Z1 =  [ s11  -s22 ] */
 
- /*                    [ t11  -t22 ], */
 
- /*     This is done by computing (using real arithmetic) the */
 
- /*     roots of the characteristical polynomial det(Z1' * Z1 - lambda I), */
 
- /*     where Z1' denotes the conjugate transpose of Z1 and det(X) denotes */
 
- /*     the determinant of X. */
 
- /*     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */
 
- /*     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2) */
 
- /*              Z2 = [ kron(S11', In-2)  -kron(I2, S22) ] */
 
- /*                   [ kron(T11', In-2)  -kron(I2, T22) ] */
 
- /*     Note that if the default method for computing DIF is wanted (see */
 
- /*     DLATDF), then the parameter DIFDRI (see below) should be changed */
 
- /*     from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL */
 
- /*     for more details. */
 
- /*  For each eigenvalue/vector specified by SELECT, DIF stores a */
 
- /*  Frobenius norm-based estimate of Difl. */
 
- /*  An approximate error bound for the i-th computed eigenvector VL(i) or */
 
- /*  VR(i) is given by */
 
- /*             EPS * norm(A, B) / DIF(i). */
 
- /*  See ref. [2-3] for more details and further references. */
 
- /*  Based on contributions by */
 
- /*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 
- /*     Umea University, S-901 87 Umea, Sweden. */
 
- /*  References */
 
- /*  ========== */
 
- /*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
 
- /*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
 
- /*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
 
- /*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
 
- /*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
 
- /*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
 
- /*      Estimation: Theory, Algorithms and Software, */
 
- /*      Report UMINF - 94.04, Department of Computing Science, Umea */
 
- /*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
 
- /*      Note 87. To appear in Numerical Algorithms, 1996. */
 
- /*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
 
- /*      for Solving the Generalized Sylvester Equation and Estimating the */
 
- /*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
 
- /*      Department of Computing Science, Umea University, S-901 87 Umea, */
 
- /*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
 
- /*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22, */
 
- /*      No 1, 1996. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Decode and test the input parameters */
 
-     /* Parameter adjustments */
 
-     --select;
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     vl_dim1 = *ldvl;
 
-     vl_offset = 1 + vl_dim1;
 
-     vl -= vl_offset;
 
-     vr_dim1 = *ldvr;
 
-     vr_offset = 1 + vr_dim1;
 
-     vr -= vr_offset;
 
-     --s;
 
-     --dif;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     wantbh = _starpu_lsame_(job, "B");
 
-     wants = _starpu_lsame_(job, "E") || wantbh;
 
-     wantdf = _starpu_lsame_(job, "V") || wantbh;
 
-     somcon = _starpu_lsame_(howmny, "S");
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     if (! wants && ! wantdf) {
 
- 	*info = -1;
 
-     } else if (! _starpu_lsame_(howmny, "A") && ! somcon) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -8;
 
-     } else if (wants && *ldvl < *n) {
 
- 	*info = -10;
 
-     } else if (wants && *ldvr < *n) {
 
- 	*info = -12;
 
-     } else {
 
- /*        Set M to the number of eigenpairs for which condition numbers */
 
- /*        are required, and test MM. */
 
- 	if (somcon) {
 
- 	    *m = 0;
 
- 	    pair = FALSE_;
 
- 	    i__1 = *n;
 
- 	    for (k = 1; k <= i__1; ++k) {
 
- 		if (pair) {
 
- 		    pair = FALSE_;
 
- 		} else {
 
- 		    if (k < *n) {
 
- 			if (a[k + 1 + k * a_dim1] == 0.) {
 
- 			    if (select[k]) {
 
- 				++(*m);
 
- 			    }
 
- 			} else {
 
- 			    pair = TRUE_;
 
- 			    if (select[k] || select[k + 1]) {
 
- 				*m += 2;
 
- 			    }
 
- 			}
 
- 		    } else {
 
- 			if (select[*n]) {
 
- 			    ++(*m);
 
- 			}
 
- 		    }
 
- 		}
 
- /* L10: */
 
- 	    }
 
- 	} else {
 
- 	    *m = *n;
 
- 	}
 
- 	if (*n == 0) {
 
- 	    lwmin = 1;
 
- 	} else if (_starpu_lsame_(job, "V") || _starpu_lsame_(job, 
 
- 		"B")) {
 
- 	    lwmin = (*n << 1) * (*n + 2) + 16;
 
- 	} else {
 
- 	    lwmin = *n;
 
- 	}
 
- 	work[1] = (doublereal) lwmin;
 
- 	if (*mm < *m) {
 
- 	    *info = -15;
 
- 	} else if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -18;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DTGSNA", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = _starpu_dlamch_("P");
 
-     smlnum = _starpu_dlamch_("S") / eps;
 
-     ks = 0;
 
-     pair = FALSE_;
 
-     i__1 = *n;
 
-     for (k = 1; k <= i__1; ++k) {
 
- /*        Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */
 
- 	if (pair) {
 
- 	    pair = FALSE_;
 
- 	    goto L20;
 
- 	} else {
 
- 	    if (k < *n) {
 
- 		pair = a[k + 1 + k * a_dim1] != 0.;
 
- 	    }
 
- 	}
 
- /*        Determine whether condition numbers are required for the k-th */
 
- /*        eigenpair. */
 
- 	if (somcon) {
 
- 	    if (pair) {
 
- 		if (! select[k] && ! select[k + 1]) {
 
- 		    goto L20;
 
- 		}
 
- 	    } else {
 
- 		if (! select[k]) {
 
- 		    goto L20;
 
- 		}
 
- 	    }
 
- 	}
 
- 	++ks;
 
- 	if (wants) {
 
- /*           Compute the reciprocal condition number of the k-th */
 
- /*           eigenvalue. */
 
- 	    if (pair) {
 
- /*              Complex eigenvalue pair. */
 
- 		d__1 = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
 
- 		d__2 = _starpu_dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
 
- 		rnrm = _starpu_dlapy2_(&d__1, &d__2);
 
- 		d__1 = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
 
- 		d__2 = _starpu_dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
 
- 		lnrm = _starpu_dlapy2_(&d__1, &d__2);
 
- 		_starpu_dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 
 
- 			+ 1], &c__1, &c_b21, &work[1], &c__1);
 
- 		tmprr = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
 
- 			c__1);
 
- 		tmpri = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
 
- 			 &c__1);
 
- 		_starpu_dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) * 
 
- 			vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
 
- 		tmpii = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
 
- 			 &c__1);
 
- 		tmpir = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
 
- 			c__1);
 
- 		uhav = tmprr + tmpii;
 
- 		uhavi = tmpir - tmpri;
 
- 		_starpu_dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 
 
- 			+ 1], &c__1, &c_b21, &work[1], &c__1);
 
- 		tmprr = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
 
- 			c__1);
 
- 		tmpri = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
 
- 			 &c__1);
 
- 		_starpu_dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) * 
 
- 			vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
 
- 		tmpii = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1], 
 
- 			 &c__1);
 
- 		tmpir = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
 
- 			c__1);
 
- 		uhbv = tmprr + tmpii;
 
- 		uhbvi = tmpir - tmpri;
 
- 		uhav = _starpu_dlapy2_(&uhav, &uhavi);
 
- 		uhbv = _starpu_dlapy2_(&uhbv, &uhbvi);
 
- 		cond = _starpu_dlapy2_(&uhav, &uhbv);
 
- 		s[ks] = cond / (rnrm * lnrm);
 
- 		s[ks + 1] = s[ks];
 
- 	    } else {
 
- /*              Real eigenvalue. */
 
- 		rnrm = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
 
- 		lnrm = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
 
- 		_starpu_dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 
 
- 			+ 1], &c__1, &c_b21, &work[1], &c__1);
 
- 		uhav = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
 
- 			;
 
- 		_starpu_dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 
 
- 			+ 1], &c__1, &c_b21, &work[1], &c__1);
 
- 		uhbv = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
 
- 			;
 
- 		cond = _starpu_dlapy2_(&uhav, &uhbv);
 
- 		if (cond == 0.) {
 
- 		    s[ks] = -1.;
 
- 		} else {
 
- 		    s[ks] = cond / (rnrm * lnrm);
 
- 		}
 
- 	    }
 
- 	}
 
- 	if (wantdf) {
 
- 	    if (*n == 1) {
 
- 		dif[ks] = _starpu_dlapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);
 
- 		goto L20;
 
- 	    }
 
- /*           Estimate the reciprocal condition number of the k-th */
 
- /*           eigenvectors. */
 
- 	    if (pair) {
 
- /*              Copy the  2-by 2 pencil beginning at (A(k,k), B(k, k)). */
 
- /*              Compute the eigenvalue(s) at position K. */
 
- 		work[1] = a[k + k * a_dim1];
 
- 		work[2] = a[k + 1 + k * a_dim1];
 
- 		work[3] = a[k + (k + 1) * a_dim1];
 
- 		work[4] = a[k + 1 + (k + 1) * a_dim1];
 
- 		work[5] = b[k + k * b_dim1];
 
- 		work[6] = b[k + 1 + k * b_dim1];
 
- 		work[7] = b[k + (k + 1) * b_dim1];
 
- 		work[8] = b[k + 1 + (k + 1) * b_dim1];
 
- 		d__1 = smlnum * eps;
 
- 		_starpu_dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta, dummy1, 
 
- 			 &alphar, dummy, &alphai);
 
- 		alprqt = 1.;
 
- 		c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.;
 
- 		c2 = beta * 4. * beta * alphai * alphai;
 
- 		root1 = c1 + sqrt(c1 * c1 - c2 * 4.);
 
- 		root2 = c2 / root1;
 
- 		root1 /= 2.;
 
- /* Computing MIN */
 
- 		d__1 = sqrt(root1), d__2 = sqrt(root2);
 
- 		cond = min(d__1,d__2);
 
- 	    }
 
- /*           Copy the matrix (A, B) to the array WORK and swap the */
 
- /*           diagonal block beginning at A(k,k) to the (1,1) position. */
 
- 	    _starpu_dlacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
 
- 	    _starpu_dlacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
 
- 	    ifst = k;
 
- 	    ilst = 1;
 
- 	    i__2 = *lwork - (*n << 1) * *n;
 
- 	    _starpu_dtgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n, 
 
- 		     dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *
 
- 		    n << 1) + 1], &i__2, &ierr);
 
- 	    if (ierr > 0) {
 
- /*              Ill-conditioned problem - swap rejected. */
 
- 		dif[ks] = 0.;
 
- 	    } else {
 
- /*              Reordering successful, solve generalized Sylvester */
 
- /*              equation for R and L, */
 
- /*                         A22 * R - L * A11 = A12 */
 
- /*                         B22 * R - L * B11 = B12, */
 
- /*              and compute estimate of Difl((A11,B11), (A22, B22)). */
 
- 		n1 = 1;
 
- 		if (work[2] != 0.) {
 
- 		    n1 = 2;
 
- 		}
 
- 		n2 = *n - n1;
 
- 		if (n2 == 0) {
 
- 		    dif[ks] = cond;
 
- 		} else {
 
- 		    i__ = *n * *n + 1;
 
- 		    iz = (*n << 1) * *n + 1;
 
- 		    i__2 = *lwork - (*n << 1) * *n;
 
- 		    _starpu_dtgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n, 
 
- 			    &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1 
 
- 			    + i__], n, &work[i__], n, &work[n1 + i__], n, &
 
- 			    scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1], 
 
- 			    &ierr);
 
- 		    if (pair) {
 
- /* Computing MIN */
 
- 			d__1 = max(1.,alprqt) * dif[ks];
 
- 			dif[ks] = min(d__1,cond);
 
- 		    }
 
- 		}
 
- 	    }
 
- 	    if (pair) {
 
- 		dif[ks + 1] = dif[ks];
 
- 	    }
 
- 	}
 
- 	if (pair) {
 
- 	    ++ks;
 
- 	}
 
- L20:
 
- 	;
 
-     }
 
-     work[1] = (doublereal) lwmin;
 
-     return 0;
 
- /*     End of DTGSNA */
 
- } /* _starpu_dtgsna_ */
 
 
  |