| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 | /* dsysv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dsysv_(char *uplo, integer *n, integer *nrhs, doublereal 	*a, integer *lda, integer *ipiv, doublereal *b, integer *ldb, 	doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1;    /* Local variables */    integer nb;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_dsytrf_(char *, integer *, doublereal *, 	    integer *, integer *, doublereal *, integer *, integer *);    integer lwkopt;    logical lquery;    extern /* Subroutine */ int _starpu_dsytrs_(char *, integer *, integer *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYSV computes the solution to a real system of linear equations *//*     A * X = B, *//*  where A is an N-by-N symmetric matrix and X and B are N-by-NRHS *//*  matrices. *//*  The diagonal pivoting method is used to factor A as *//*     A = U * D * U**T,  if UPLO = 'U', or *//*     A = L * D * L**T,  if UPLO = 'L', *//*  where U (or L) is a product of permutation and unit upper (lower) *//*  triangular matrices, and D is symmetric and block diagonal with *//*  1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then *//*  used to solve the system of equations A * X = B. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          N-by-N upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading N-by-N lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if INFO = 0, the block diagonal matrix D and the *//*          multipliers used to obtain the factor U or L from the *//*          factorization A = U*D*U**T or A = L*D*L**T as computed by *//*          DSYTRF. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (output) INTEGER array, dimension (N) *//*          Details of the interchanges and the block structure of D, as *//*          determined by DSYTRF.  If IPIV(k) > 0, then rows and columns *//*          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 *//*          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, *//*          then rows and columns k-1 and -IPIV(k) were interchanged and *//*          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and *//*          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and *//*          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 *//*          diagonal block. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the N-by-NRHS right hand side matrix B. *//*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The length of WORK.  LWORK >= 1, and for best performance *//*          LWORK >= max(1,N*NB), where NB is the optimal blocksize for *//*          DSYTRF. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization *//*               has been completed, but the block diagonal matrix D is *//*               exactly singular, so the solution could not be computed. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --work;    /* Function Body */    *info = 0;    lquery = *lwork == -1;    if (! _starpu_lsame_(uplo, "U") && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -8;    } else if (*lwork < 1 && ! lquery) {	*info = -10;    }    if (*info == 0) {	if (*n == 0) {	    lwkopt = 1;	} else {	    nb = _starpu_ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1);	    lwkopt = *n * nb;	}	work[1] = (doublereal) lwkopt;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSYSV ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Compute the factorization A = U*D*U' or A = L*D*L'. */    _starpu_dsytrf_(uplo, n, &a[a_offset], lda, &ipiv[1], &work[1], lwork, info);    if (*info == 0) {/*        Solve the system A*X = B, overwriting B with X. */	_starpu_dsytrs_(uplo, n, nrhs, &a[a_offset], lda, &ipiv[1], &b[b_offset], ldb, 		 info);    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DSYSV */} /* _starpu_dsysv_ */
 |