| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417 | /* dsgesv.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b10 = -1.;static doublereal c_b11 = 1.;static integer c__1 = 1;/* Subroutine */ int _starpu__starpu_dsgesv_(integer *n, integer *nrhs, doublereal *a, 	integer *lda, integer *ipiv, doublereal *b, integer *ldb, doublereal *	x, integer *ldx, doublereal *work, real *swork, integer *iter, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset, 	    x_dim1, x_offset, i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__;    doublereal cte, eps, anrm;    integer ptsa;    doublereal rnrm, xnrm;    integer ptsx;    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    integer iiter;    extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *), _starpu_dlag2s_(integer *, integer *, 	     doublereal *, integer *, real *, integer *, integer *), _starpu_slag2d_(	    integer *, integer *, real *, integer *, doublereal *, integer *, 	    integer *);    extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *), _starpu_dgetrf_(integer *, integer *, 	    doublereal *, integer *, integer *, integer *), _starpu_dgetrs_(char *, 	    integer *, integer *, doublereal *, integer *, integer *, 	    doublereal *, integer *, integer *), _starpu_sgetrf_(integer *, 	    integer *, real *, integer *, integer *, integer *), _starpu_sgetrs_(char 	    *, integer *, integer *, real *, integer *, integer *, real *, 	    integer *, integer *);/*  -- LAPACK PROTOTYPE driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     February 2007 *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSGESV computes the solution to a real system of linear equations *//*     A * X = B, *//*  where A is an N-by-N matrix and X and B are N-by-NRHS matrices. *//*  DSGESV first attempts to factorize the matrix in SINGLE PRECISION *//*  and use this factorization within an iterative refinement procedure *//*  to produce a solution with DOUBLE PRECISION normwise backward error *//*  quality (see below). If the approach fails the method switches to a *//*  DOUBLE PRECISION factorization and solve. *//*  The iterative refinement is not going to be a winning strategy if *//*  the ratio SINGLE PRECISION performance over DOUBLE PRECISION *//*  performance is too small. A reasonable strategy should take the *//*  number of right-hand sides and the size of the matrix into account. *//*  This might be done with a call to ILAENV in the future. Up to now, we *//*  always try iterative refinement. *//*  The iterative refinement process is stopped if *//*      ITER > ITERMAX *//*  or for all the RHS we have: *//*      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX *//*  where *//*      o ITER is the number of the current iteration in the iterative *//*        refinement process *//*      o RNRM is the infinity-norm of the residual *//*      o XNRM is the infinity-norm of the solution *//*      o ANRM is the infinity-operator-norm of the matrix A *//*      o EPS is the machine epsilon returned by DLAMCH('Epsilon') *//*  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 *//*  respectively. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The number of linear equations, i.e., the order of the *//*          matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  A       (input or input/ouptut) DOUBLE PRECISION array, *//*          dimension (LDA,N) *//*          On entry, the N-by-N coefficient matrix A. *//*          On exit, if iterative refinement has been successfully used *//*          (INFO.EQ.0 and ITER.GE.0, see description below), then A is *//*          unchanged, if double precision factorization has been used *//*          (INFO.EQ.0 and ITER.LT.0, see description below), then the *//*          array A contains the factors L and U from the factorization *//*          A = P*L*U; the unit diagonal elements of L are not stored. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (output) INTEGER array, dimension (N) *//*          The pivot indices that define the permutation matrix P; *//*          row i of the matrix was interchanged with row IPIV(i). *//*          Corresponds either to the single precision factorization *//*          (if INFO.EQ.0 and ITER.GE.0) or the double precision *//*          factorization (if INFO.EQ.0 and ITER.LT.0). *//*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          The N-by-NRHS right hand side matrix B. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) *//*          If INFO = 0, the N-by-NRHS solution matrix X. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X.  LDX >= max(1,N). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N*NRHS) *//*          This array is used to hold the residual vectors. *//*  SWORK   (workspace) REAL array, dimension (N*(N+NRHS)) *//*          This array is used to use the single precision matrix and the *//*          right-hand sides or solutions in single precision. *//*  ITER    (output) INTEGER *//*          < 0: iterative refinement has failed, double precision *//*               factorization has been performed *//*               -1 : the routine fell back to full precision for *//*                    implementation- or machine-specific reasons *//*               -2 : narrowing the precision induced an overflow, *//*                    the routine fell back to full precision *//*               -3 : failure of SGETRF *//*               -31: stop the iterative refinement after the 30th *//*                    iterations *//*          > 0: iterative refinement has been sucessfully used. *//*               Returns the number of iterations *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, U(i,i) computed in DOUBLE PRECISION is *//*                exactly zero.  The factorization has been completed, *//*                but the factor U is exactly singular, so the solution *//*                could not be computed. *//*  ========= *//*     .. Parameters .. *//*     .. Local Scalars .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    work_dim1 = *n;    work_offset = 1 + work_dim1;    work -= work_offset;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    --swork;    /* Function Body */    *info = 0;    *iter = 0;/*     Test the input parameters. */    if (*n < 0) {	*info = -1;    } else if (*nrhs < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    } else if (*ldb < max(1,*n)) {	*info = -7;    } else if (*ldx < max(1,*n)) {	*info = -9;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSGESV", &i__1);	return 0;    }/*     Quick return if (N.EQ.0). */    if (*n == 0) {	return 0;    }/*     Skip single precision iterative refinement if a priori slower *//*     than double precision factorization. */    if (FALSE_) {	*iter = -1;	goto L40;    }/*     Compute some constants. */    anrm = _starpu_dlange_("I", n, n, &a[a_offset], lda, &work[work_offset]);    eps = _starpu_dlamch_("Epsilon");    cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;/*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */    ptsa = 1;    ptsx = ptsa + *n * *n;/*     Convert B from double precision to single precision and store the *//*     result in SX. */    _starpu_dlag2s_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);    if (*info != 0) {	*iter = -2;	goto L40;    }/*     Convert A from double precision to single precision and store the *//*     result in SA. */    _starpu_dlag2s_(n, n, &a[a_offset], lda, &swork[ptsa], n, info);    if (*info != 0) {	*iter = -2;	goto L40;    }/*     Compute the LU factorization of SA. */    _starpu_sgetrf_(n, n, &swork[ptsa], n, &ipiv[1], info);    if (*info != 0) {	*iter = -3;	goto L40;    }/*     Solve the system SA*SX = SB. */    _starpu_sgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[ptsx], 	    n, info);/*     Convert SX back to double precision */    _starpu_slag2d_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);/*     Compute R = B - AX (R is WORK). */    _starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);    _starpu_dgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b10, &a[a_offset], 	    lda, &x[x_offset], ldx, &c_b11, &work[work_offset], n);/*     Check whether the NRHS normwise backward errors satisfy the *//*     stopping criterion. If yes, set ITER=0 and return. */    i__1 = *nrhs;    for (i__ = 1; i__ <= i__1; ++i__) {	xnrm = (d__1 = x[_starpu_idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * 		x_dim1], abs(d__1));	rnrm = (d__1 = work[_starpu_idamax_(n, &work[i__ * work_dim1 + 1], &c__1) + 		i__ * work_dim1], abs(d__1));	if (rnrm > xnrm * cte) {	    goto L10;	}    }/*     If we are here, the NRHS normwise backward errors satisfy the *//*     stopping criterion. We are good to exit. */    *iter = 0;    return 0;L10:    for (iiter = 1; iiter <= 30; ++iiter) {/*        Convert R (in WORK) from double precision to single precision *//*        and store the result in SX. */	_starpu_dlag2s_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);	if (*info != 0) {	    *iter = -2;	    goto L40;	}/*        Solve the system SA*SX = SR. */	_starpu_sgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[		ptsx], n, info);/*        Convert SX back to double precision and update the current *//*        iterate. */	_starpu_slag2d_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);	i__1 = *nrhs;	for (i__ = 1; i__ <= i__1; ++i__) {	    _starpu_daxpy_(n, &c_b11, &work[i__ * work_dim1 + 1], &c__1, &x[i__ * 		    x_dim1 + 1], &c__1);	}/*        Compute R = B - AX (R is WORK). */	_starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);	_starpu_dgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b10, &a[		a_offset], lda, &x[x_offset], ldx, &c_b11, &work[work_offset], 		 n);/*        Check whether the NRHS normwise backward errors satisfy the *//*        stopping criterion. If yes, set ITER=IITER>0 and return. */	i__1 = *nrhs;	for (i__ = 1; i__ <= i__1; ++i__) {	    xnrm = (d__1 = x[_starpu_idamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * 		    x_dim1], abs(d__1));	    rnrm = (d__1 = work[_starpu_idamax_(n, &work[i__ * work_dim1 + 1], &c__1) 		    + i__ * work_dim1], abs(d__1));	    if (rnrm > xnrm * cte) {		goto L20;	    }	}/*        If we are here, the NRHS normwise backward errors satisfy the *//*        stopping criterion, we are good to exit. */	*iter = iiter;	return 0;L20:/* L30: */	;    }/*     If we are at this place of the code, this is because we have *//*     performed ITER=ITERMAX iterations and never satisified the *//*     stopping criterion, set up the ITER flag accordingly and follow up *//*     on double precision routine. */    *iter = -31;L40:/*     Single-precision iterative refinement failed to converge to a *//*     satisfactory solution, so we resort to double precision. */    _starpu_dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);    if (*info != 0) {	return 0;    }    _starpu_dlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);    _starpu_dgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &x[x_offset], ldx, info);    return 0;/*     End of DSGESV. */} /* _starpu__starpu_dsgesv_ */
 |