| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467 | /* dsbgvx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b25 = 1.;static doublereal c_b27 = 0.;/* Subroutine */ int _starpu_dsbgvx_(char *jobz, char *range, char *uplo, integer *n, 	integer *ka, integer *kb, doublereal *ab, integer *ldab, doublereal *	bb, integer *ldbb, doublereal *q, integer *ldq, doublereal *vl, 	doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer 	*m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 	integer *iwork, integer *ifail, integer *info){    /* System generated locals */    integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1, 	    z_offset, i__1, i__2;    /* Local variables */    integer i__, j, jj;    doublereal tmp1;    integer indd, inde;    char vect[1];    logical test;    integer itmp1, indee;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    integer iinfo;    char order[1];    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    logical upper, wantz, alleig, indeig;    integer indibl;    logical valeig;    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *), _starpu_dpbstf_(char *, integer *, 	    integer *, doublereal *, integer *, integer *), _starpu_dsbtrd_(	    char *, char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     integer *);    integer indisp;    extern /* Subroutine */ int _starpu_dsbgst_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *),	     _starpu_dstein_(integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *, integer *, integer *);    integer indiwo;    extern /* Subroutine */ int _starpu_dsterf_(integer *, doublereal *, doublereal *, 	     integer *), _starpu_dstebz_(char *, char *, integer *, doublereal *, 	    doublereal *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *, doublereal *, integer *, integer *);    integer indwrk;    extern /* Subroutine */ int _starpu_dsteqr_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *);    integer nsplit;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSBGVX computes selected eigenvalues, and optionally, eigenvectors *//*  of a real generalized symmetric-definite banded eigenproblem, of *//*  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric *//*  and banded, and B is also positive definite.  Eigenvalues and *//*  eigenvectors can be selected by specifying either all eigenvalues, *//*  a range of values or a range of indices for the desired eigenvalues. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  RANGE   (input) CHARACTER*1 *//*          = 'A': all eigenvalues will be found. *//*          = 'V': all eigenvalues in the half-open interval (VL,VU] *//*                 will be found. *//*          = 'I': the IL-th through IU-th eigenvalues will be found. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangles of A and B are stored; *//*          = 'L':  Lower triangles of A and B are stored. *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  KA      (input) INTEGER *//*          The number of superdiagonals of the matrix A if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'.  KA >= 0. *//*  KB      (input) INTEGER *//*          The number of superdiagonals of the matrix B if UPLO = 'U', *//*          or the number of subdiagonals if UPLO = 'L'.  KB >= 0. *//*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix A, stored in the first ka+1 rows of the array.  The *//*          j-th column of A is stored in the j-th column of the array AB *//*          as follows: *//*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; *//*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). *//*          On exit, the contents of AB are destroyed. *//*  LDAB    (input) INTEGER *//*          The leading dimension of the array AB.  LDAB >= KA+1. *//*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N) *//*          On entry, the upper or lower triangle of the symmetric band *//*          matrix B, stored in the first kb+1 rows of the array.  The *//*          j-th column of B is stored in the j-th column of the array BB *//*          as follows: *//*          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; *//*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). *//*          On exit, the factor S from the split Cholesky factorization *//*          B = S**T*S, as returned by DPBSTF. *//*  LDBB    (input) INTEGER *//*          The leading dimension of the array BB.  LDBB >= KB+1. *//*  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N) *//*          If JOBZ = 'V', the n-by-n matrix used in the reduction of *//*          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, *//*          and consequently C to tridiagonal form. *//*          If JOBZ = 'N', the array Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q.  If JOBZ = 'N', *//*          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). *//*  VL      (input) DOUBLE PRECISION *//*  VU      (input) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds of the interval to *//*          be searched for eigenvalues. VL < VU. *//*          Not referenced if RANGE = 'A' or 'I'. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. *//*          Not referenced if RANGE = 'A' or 'V'. *//*  ABSTOL  (input) DOUBLE PRECISION *//*          The absolute error tolerance for the eigenvalues. *//*          An approximate eigenvalue is accepted as converged *//*          when it is determined to lie in an interval [a,b] *//*          of width less than or equal to *//*                  ABSTOL + EPS *   max( |a|,|b| ) , *//*          where EPS is the machine precision.  If ABSTOL is less than *//*          or equal to zero, then  EPS*|T|  will be used in its place, *//*          where |T| is the 1-norm of the tridiagonal matrix obtained *//*          by reducing A to tridiagonal form. *//*          Eigenvalues will be computed most accurately when ABSTOL is *//*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. *//*          If this routine returns with INFO>0, indicating that some *//*          eigenvectors did not converge, try setting ABSTOL to *//*          2*DLAMCH('S'). *//*  M       (output) INTEGER *//*          The total number of eigenvalues found.  0 <= M <= N. *//*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0, the eigenvalues in ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of *//*          eigenvectors, with the i-th column of Z holding the *//*          eigenvector associated with W(i).  The eigenvectors are *//*          normalized so Z**T*B*Z = I. *//*          If JOBZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N) *//*  IWORK   (workspace/output) INTEGER array, dimension (5*N) *//*  IFAIL   (output) INTEGER array, dimension (M) *//*          If JOBZ = 'V', then if INFO = 0, the first M elements of *//*          IFAIL are zero.  If INFO > 0, then IFAIL contains the *//*          indices of the eigenvalues that failed to converge. *//*          If JOBZ = 'N', then IFAIL is not referenced. *//*  INFO    (output) INTEGER *//*          = 0 : successful exit *//*          < 0 : if INFO = -i, the i-th argument had an illegal value *//*          <= N: if INFO = i, then i eigenvectors failed to converge. *//*                  Their indices are stored in IFAIL. *//*          > N : DPBSTF returned an error code; i.e., *//*                if INFO = N + i, for 1 <= i <= N, then the leading *//*                minor of order i of B is not positive definite. *//*                The factorization of B could not be completed and *//*                no eigenvalues or eigenvectors were computed. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    ab_dim1 = *ldab;    ab_offset = 1 + ab_dim1;    ab -= ab_offset;    bb_dim1 = *ldbb;    bb_offset = 1 + bb_dim1;    bb -= bb_offset;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    --iwork;    --ifail;    /* Function Body */    wantz = _starpu_lsame_(jobz, "V");    upper = _starpu_lsame_(uplo, "U");    alleig = _starpu_lsame_(range, "A");    valeig = _starpu_lsame_(range, "V");    indeig = _starpu_lsame_(range, "I");    *info = 0;    if (! (wantz || _starpu_lsame_(jobz, "N"))) {	*info = -1;    } else if (! (alleig || valeig || indeig)) {	*info = -2;    } else if (! (upper || _starpu_lsame_(uplo, "L"))) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*ka < 0) {	*info = -5;    } else if (*kb < 0 || *kb > *ka) {	*info = -6;    } else if (*ldab < *ka + 1) {	*info = -8;    } else if (*ldbb < *kb + 1) {	*info = -10;    } else if (*ldq < 1 || wantz && *ldq < *n) {	*info = -12;    } else {	if (valeig) {	    if (*n > 0 && *vu <= *vl) {		*info = -14;	    }	} else if (indeig) {	    if (*il < 1 || *il > max(1,*n)) {		*info = -15;	    } else if (*iu < min(*n,*il) || *iu > *n) {		*info = -16;	    }	}    }    if (*info == 0) {	if (*ldz < 1 || wantz && *ldz < *n) {	    *info = -21;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSBGVX", &i__1);	return 0;    }/*     Quick return if possible */    *m = 0;    if (*n == 0) {	return 0;    }/*     Form a split Cholesky factorization of B. */    _starpu_dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);    if (*info != 0) {	*info = *n + *info;	return 0;    }/*     Transform problem to standard eigenvalue problem. */    _starpu_dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 	     &q[q_offset], ldq, &work[1], &iinfo);/*     Reduce symmetric band matrix to tridiagonal form. */    indd = 1;    inde = indd + *n;    indwrk = inde + *n;    if (wantz) {	*(unsigned char *)vect = 'U';    } else {	*(unsigned char *)vect = 'N';    }    _starpu_dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &work[indd], &work[inde], 	     &q[q_offset], ldq, &work[indwrk], &iinfo);/*     If all eigenvalues are desired and ABSTOL is less than or equal *//*     to zero, then call DSTERF or SSTEQR.  If this fails for some *//*     eigenvalue, then try DSTEBZ. */    test = FALSE_;    if (indeig) {	if (*il == 1 && *iu == *n) {	    test = TRUE_;	}    }    if ((alleig || test) && *abstol <= 0.) {	_starpu_dcopy_(n, &work[indd], &c__1, &w[1], &c__1);	indee = indwrk + (*n << 1);	i__1 = *n - 1;	_starpu_dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);	if (! wantz) {	    _starpu_dsterf_(n, &w[1], &work[indee], info);	} else {	    _starpu_dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);	    _starpu_dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[		    indwrk], info);	    if (*info == 0) {		i__1 = *n;		for (i__ = 1; i__ <= i__1; ++i__) {		    ifail[i__] = 0;/* L10: */		}	    }	}	if (*info == 0) {	    *m = *n;	    goto L30;	}	*info = 0;    }/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, *//*     call DSTEIN. */    if (wantz) {	*(unsigned char *)order = 'B';    } else {	*(unsigned char *)order = 'E';    }    indibl = 1;    indisp = indibl + *n;    indiwo = indisp + *n;    _starpu_dstebz_(range, order, n, vl, vu, il, iu, abstol, &work[indd], &work[inde], 	     m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk], 	     &iwork[indiwo], info);    if (wantz) {	_starpu_dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &		ifail[1], info);/*        Apply transformation matrix used in reduction to tridiagonal *//*        form to eigenvectors returned by DSTEIN. */	i__1 = *m;	for (j = 1; j <= i__1; ++j) {	    _starpu_dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);	    _starpu_dgemv_("N", n, n, &c_b25, &q[q_offset], ldq, &work[1], &c__1, &		    c_b27, &z__[j * z_dim1 + 1], &c__1);/* L20: */	}    }L30:/*     If eigenvalues are not in order, then sort them, along with *//*     eigenvectors. */    if (wantz) {	i__1 = *m - 1;	for (j = 1; j <= i__1; ++j) {	    i__ = 0;	    tmp1 = w[j];	    i__2 = *m;	    for (jj = j + 1; jj <= i__2; ++jj) {		if (w[jj] < tmp1) {		    i__ = jj;		    tmp1 = w[jj];		}/* L40: */	    }	    if (i__ != 0) {		itmp1 = iwork[indibl + i__ - 1];		w[i__] = w[j];		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];		w[j] = tmp1;		iwork[indibl + j - 1] = itmp1;		_starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 			 &c__1);		if (*info != 0) {		    itmp1 = ifail[i__];		    ifail[i__] = ifail[j];		    ifail[j] = itmp1;		}	    }/* L50: */	}    }    return 0;/*     End of DSBGVX */} /* _starpu_dsbgvx_ */
 |