| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 | 
							- /* dsbgv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dsbgv_(char *jobz, char *uplo, integer *n, integer *ka, 
 
- 	integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer *
 
- 	ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, 
 
- 	integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
 
-     /* Local variables */
 
-     integer inde;
 
-     char vect[1];
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer iinfo;
 
-     logical upper, wantz;
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dpbstf_(
 
- 	    char *, integer *, integer *, doublereal *, integer *, integer *), _starpu_dsbtrd_(char *, char *, integer *, integer *, doublereal 
 
- 	    *, integer *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     doublereal *, integer *), _starpu_dsbgst_(char *, char *, 
 
- 	     integer *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *), _starpu_dsterf_(integer *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     integer indwrk;
 
-     extern /* Subroutine */ int _starpu_dsteqr_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSBGV computes all the eigenvalues, and optionally, the eigenvectors */
 
- /*  of a real generalized symmetric-definite banded eigenproblem, of */
 
- /*  the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */
 
- /*  and banded, and B is also positive definite. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangles of A and B are stored; */
 
- /*          = 'L':  Lower triangles of A and B are stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrices A and B.  N >= 0. */
 
- /*  KA      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
 
- /*  KB      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix B if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */
 
- /*          On entry, the upper or lower triangle of the symmetric band */
 
- /*          matrix A, stored in the first ka+1 rows of the array.  The */
 
- /*          j-th column of A is stored in the j-th column of the array AB */
 
- /*          as follows: */
 
- /*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka). */
 
- /*          On exit, the contents of AB are destroyed. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= KA+1. */
 
- /*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */
 
- /*          On entry, the upper or lower triangle of the symmetric band */
 
- /*          matrix B, stored in the first kb+1 rows of the array.  The */
 
- /*          j-th column of B is stored in the j-th column of the array BB */
 
- /*          as follows: */
 
- /*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
 
- /*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb). */
 
- /*          On exit, the factor S from the split Cholesky factorization */
 
- /*          B = S**T*S, as returned by DPBSTF. */
 
- /*  LDBB    (input) INTEGER */
 
- /*          The leading dimension of the array BB.  LDBB >= KB+1. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If INFO = 0, the eigenvalues in ascending order. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) */
 
- /*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
 
- /*          eigenvectors, with the i-th column of Z holding the */
 
- /*          eigenvector associated with W(i). The eigenvectors are */
 
- /*          normalized so that Z**T*B*Z = I. */
 
- /*          If JOBZ = 'N', then Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= N. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, and i is: */
 
- /*             <= N:  the algorithm failed to converge: */
 
- /*                    i off-diagonal elements of an intermediate */
 
- /*                    tridiagonal form did not converge to zero; */
 
- /*             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF */
 
- /*                    returned INFO = i: B is not positive definite. */
 
- /*                    The factorization of B could not be completed and */
 
- /*                    no eigenvalues or eigenvectors were computed. */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     bb_dim1 = *ldbb;
 
-     bb_offset = 1 + bb_dim1;
 
-     bb -= bb_offset;
 
-     --w;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     /* Function Body */
 
-     wantz = _starpu_lsame_(jobz, "V");
 
-     upper = _starpu_lsame_(uplo, "U");
 
-     *info = 0;
 
-     if (! (wantz || _starpu_lsame_(jobz, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (upper || _starpu_lsame_(uplo, "L"))) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*ka < 0) {
 
- 	*info = -4;
 
-     } else if (*kb < 0 || *kb > *ka) {
 
- 	*info = -5;
 
-     } else if (*ldab < *ka + 1) {
 
- 	*info = -7;
 
-     } else if (*ldbb < *kb + 1) {
 
- 	*info = -9;
 
-     } else if (*ldz < 1 || wantz && *ldz < *n) {
 
- 	*info = -12;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSBGV ", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Form a split Cholesky factorization of B. */
 
-     _starpu_dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
 
-     if (*info != 0) {
 
- 	*info = *n + *info;
 
- 	return 0;
 
-     }
 
- /*     Transform problem to standard eigenvalue problem. */
 
-     inde = 1;
 
-     indwrk = inde + *n;
 
-     _starpu_dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
 
- 	     &z__[z_offset], ldz, &work[indwrk], &iinfo)
 
- 	    ;
 
- /*     Reduce to tridiagonal form. */
 
-     if (wantz) {
 
- 	*(unsigned char *)vect = 'U';
 
-     } else {
 
- 	*(unsigned char *)vect = 'N';
 
-     }
 
-     _starpu_dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
 
- 	    z_offset], ldz, &work[indwrk], &iinfo);
 
- /*     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEQR. */
 
-     if (! wantz) {
 
- 	_starpu_dsterf_(n, &w[1], &work[inde], info);
 
-     } else {
 
- 	_starpu_dsteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
 
- 		indwrk], info);
 
-     }
 
-     return 0;
 
- /*     End of DSBGV */
 
- } /* _starpu_dsbgv_ */
 
 
  |