| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | 
							- /* dptcon.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dptcon_(integer *n, doublereal *d__, doublereal *e, 
 
- 	doublereal *anorm, doublereal *rcond, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, ix;
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal ainvnm;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPTCON computes the reciprocal of the condition number (in the */
 
- /*  1-norm) of a real symmetric positive definite tridiagonal matrix */
 
- /*  using the factorization A = L*D*L**T or A = U**T*D*U computed by */
 
- /*  DPTTRF. */
 
- /*  Norm(inv(A)) is computed by a direct method, and the reciprocal of */
 
- /*  the condition number is computed as */
 
- /*               RCOND = 1 / (ANORM * norm(inv(A))). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The n diagonal elements of the diagonal matrix D from the */
 
- /*          factorization of A, as computed by DPTTRF. */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) off-diagonal elements of the unit bidiagonal factor */
 
- /*          U or L from the factorization of A,  as computed by DPTTRF. */
 
- /*  ANORM   (input) DOUBLE PRECISION */
 
- /*          The 1-norm of the original matrix A. */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The reciprocal of the condition number of the matrix A, */
 
- /*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the */
 
- /*          1-norm of inv(A) computed in this routine. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The method used is described in Nicholas J. Higham, "Efficient */
 
- /*  Algorithms for Computing the Condition Number of a Tridiagonal */
 
- /*  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments. */
 
-     /* Parameter adjustments */
 
-     --work;
 
-     --e;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*anorm < 0.) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DPTCON", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     *rcond = 0.;
 
-     if (*n == 0) {
 
- 	*rcond = 1.;
 
- 	return 0;
 
-     } else if (*anorm == 0.) {
 
- 	return 0;
 
-     }
 
- /*     Check that D(1:N) is positive. */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (d__[i__] <= 0.) {
 
- 	    return 0;
 
- 	}
 
- /* L10: */
 
-     }
 
- /*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
 
- /*        m(i,j) =  abs(A(i,j)), i = j, */
 
- /*        m(i,j) = -abs(A(i,j)), i .ne. j, */
 
- /*     and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'. */
 
- /*     Solve M(L) * x = e. */
 
-     work[1] = 1.;
 
-     i__1 = *n;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	work[i__] = work[i__ - 1] * (d__1 = e[i__ - 1], abs(d__1)) + 1.;
 
- /* L20: */
 
-     }
 
- /*     Solve D * M(L)' * x = b. */
 
-     work[*n] /= d__[*n];
 
-     for (i__ = *n - 1; i__ >= 1; --i__) {
 
- 	work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (d__1 = e[i__], 
 
- 		abs(d__1));
 
- /* L30: */
 
-     }
 
- /*     Compute AINVNM = max(x(i)), 1<=i<=n. */
 
-     ix = _starpu_idamax_(n, &work[1], &c__1);
 
-     ainvnm = (d__1 = work[ix], abs(d__1));
 
- /*     Compute the reciprocal condition number. */
 
-     if (ainvnm != 0.) {
 
- 	*rcond = 1. / ainvnm / *anorm;
 
-     }
 
-     return 0;
 
- /*     End of DPTCON */
 
- } /* _starpu_dptcon_ */
 
 
  |