| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | /* dlasq4.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlasq4_(integer *i0, integer *n0, doublereal *z__, 	integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1, 	doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2, 	doublereal *tau, integer *ttype, doublereal *g){    /* System generated locals */    integer i__1;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal s, a2, b1, b2;    integer i4, nn, np;    doublereal gam, gap1, gap2;/*  -- LAPACK routine (version 3.2)                                    -- *//*  -- Contributed by Osni Marques of the Lawrence Berkeley National   -- *//*  -- Laboratory and Beresford Parlett of the Univ. of California at  -- *//*  -- Berkeley                                                        -- *//*  -- November 2008                                                   -- *//*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- *//*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASQ4 computes an approximation TAU to the smallest eigenvalue *//*  using values of d from the previous transform. *//*  I0    (input) INTEGER *//*        First index. *//*  N0    (input) INTEGER *//*        Last index. *//*  Z     (input) DOUBLE PRECISION array, dimension ( 4*N ) *//*        Z holds the qd array. *//*  PP    (input) INTEGER *//*        PP=0 for ping, PP=1 for pong. *//*  NOIN  (input) INTEGER *//*        The value of N0 at start of EIGTEST. *//*  DMIN  (input) DOUBLE PRECISION *//*        Minimum value of d. *//*  DMIN1 (input) DOUBLE PRECISION *//*        Minimum value of d, excluding D( N0 ). *//*  DMIN2 (input) DOUBLE PRECISION *//*        Minimum value of d, excluding D( N0 ) and D( N0-1 ). *//*  DN    (input) DOUBLE PRECISION *//*        d(N) *//*  DN1   (input) DOUBLE PRECISION *//*        d(N-1) *//*  DN2   (input) DOUBLE PRECISION *//*        d(N-2) *//*  TAU   (output) DOUBLE PRECISION *//*        This is the shift. *//*  TTYPE (output) INTEGER *//*        Shift type. *//*  G     (input/output) REAL *//*        G is passed as an argument in order to save its value between *//*        calls to DLASQ4. *//*  Further Details *//*  =============== *//*  CNST1 = 9/16 *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     A negative DMIN forces the shift to take that absolute value *//*     TTYPE records the type of shift. */    /* Parameter adjustments */    --z__;    /* Function Body */    if (*dmin__ <= 0.) {	*tau = -(*dmin__);	*ttype = -1;	return 0;    }    nn = (*n0 << 2) + *pp;    if (*n0in == *n0) {/*        No eigenvalues deflated. */	if (*dmin__ == *dn || *dmin__ == *dn1) {	    b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);	    b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);	    a2 = z__[nn - 7] + z__[nn - 5];/*           Cases 2 and 3. */	    if (*dmin__ == *dn && *dmin1 == *dn1) {		gap2 = *dmin2 - a2 - *dmin2 * .25;		if (gap2 > 0. && gap2 > b2) {		    gap1 = a2 - *dn - b2 / gap2 * b2;		} else {		    gap1 = a2 - *dn - (b1 + b2);		}		if (gap1 > 0. && gap1 > b1) {/* Computing MAX */		    d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;		    s = max(d__1,d__2);		    *ttype = -2;		} else {		    s = 0.;		    if (*dn > b1) {			s = *dn - b1;		    }		    if (a2 > b1 + b2) {/* Computing MIN */			d__1 = s, d__2 = a2 - (b1 + b2);			s = min(d__1,d__2);		    }/* Computing MAX */		    d__1 = s, d__2 = *dmin__ * .333;		    s = max(d__1,d__2);		    *ttype = -3;		}	    } else {/*              Case 4. */		*ttype = -4;		s = *dmin__ * .25;		if (*dmin__ == *dn) {		    gam = *dn;		    a2 = 0.;		    if (z__[nn - 5] > z__[nn - 7]) {			return 0;		    }		    b2 = z__[nn - 5] / z__[nn - 7];		    np = nn - 9;		} else {		    np = nn - (*pp << 1);		    b2 = z__[np - 2];		    gam = *dn1;		    if (z__[np - 4] > z__[np - 2]) {			return 0;		    }		    a2 = z__[np - 4] / z__[np - 2];		    if (z__[nn - 9] > z__[nn - 11]) {			return 0;		    }		    b2 = z__[nn - 9] / z__[nn - 11];		    np = nn - 13;		}/*              Approximate contribution to norm squared from I < NN-1. */		a2 += b2;		i__1 = (*i0 << 2) - 1 + *pp;		for (i4 = np; i4 >= i__1; i4 += -4) {		    if (b2 == 0.) {			goto L20;		    }		    b1 = b2;		    if (z__[i4] > z__[i4 - 2]) {			return 0;		    }		    b2 *= z__[i4] / z__[i4 - 2];		    a2 += b2;		    if (max(b2,b1) * 100. < a2 || .563 < a2) {			goto L20;		    }/* L10: */		}L20:		a2 *= 1.05;/*              Rayleigh quotient residual bound. */		if (a2 < .563) {		    s = gam * (1. - sqrt(a2)) / (a2 + 1.);		}	    }	} else if (*dmin__ == *dn2) {/*           Case 5. */	    *ttype = -5;	    s = *dmin__ * .25;/*           Compute contribution to norm squared from I > NN-2. */	    np = nn - (*pp << 1);	    b1 = z__[np - 2];	    b2 = z__[np - 6];	    gam = *dn2;	    if (z__[np - 8] > b2 || z__[np - 4] > b1) {		return 0;	    }	    a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);/*           Approximate contribution to norm squared from I < NN-2. */	    if (*n0 - *i0 > 2) {		b2 = z__[nn - 13] / z__[nn - 15];		a2 += b2;		i__1 = (*i0 << 2) - 1 + *pp;		for (i4 = nn - 17; i4 >= i__1; i4 += -4) {		    if (b2 == 0.) {			goto L40;		    }		    b1 = b2;		    if (z__[i4] > z__[i4 - 2]) {			return 0;		    }		    b2 *= z__[i4] / z__[i4 - 2];		    a2 += b2;		    if (max(b2,b1) * 100. < a2 || .563 < a2) {			goto L40;		    }/* L30: */		}L40:		a2 *= 1.05;	    }	    if (a2 < .563) {		s = gam * (1. - sqrt(a2)) / (a2 + 1.);	    }	} else {/*           Case 6, no information to guide us. */	    if (*ttype == -6) {		*g += (1. - *g) * .333;	    } else if (*ttype == -18) {		*g = .083250000000000005;	    } else {		*g = .25;	    }	    s = *g * *dmin__;	    *ttype = -6;	}    } else if (*n0in == *n0 + 1) {/*        One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */	if (*dmin1 == *dn1 && *dmin2 == *dn2) {/*           Cases 7 and 8. */	    *ttype = -7;	    s = *dmin1 * .333;	    if (z__[nn - 5] > z__[nn - 7]) {		return 0;	    }	    b1 = z__[nn - 5] / z__[nn - 7];	    b2 = b1;	    if (b2 == 0.) {		goto L60;	    }	    i__1 = (*i0 << 2) - 1 + *pp;	    for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {		a2 = b1;		if (z__[i4] > z__[i4 - 2]) {		    return 0;		}		b1 *= z__[i4] / z__[i4 - 2];		b2 += b1;		if (max(b1,a2) * 100. < b2) {		    goto L60;		}/* L50: */	    }L60:	    b2 = sqrt(b2 * 1.05);/* Computing 2nd power */	    d__1 = b2;	    a2 = *dmin1 / (d__1 * d__1 + 1.);	    gap2 = *dmin2 * .5 - a2;	    if (gap2 > 0. && gap2 > b2 * a2) {/* Computing MAX */		d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);		s = max(d__1,d__2);	    } else {/* Computing MAX */		d__1 = s, d__2 = a2 * (1. - b2 * 1.01);		s = max(d__1,d__2);		*ttype = -8;	    }	} else {/*           Case 9. */	    s = *dmin1 * .25;	    if (*dmin1 == *dn1) {		s = *dmin1 * .5;	    }	    *ttype = -9;	}    } else if (*n0in == *n0 + 2) {/*        Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. *//*        Cases 10 and 11. */	if (*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7]) {	    *ttype = -10;	    s = *dmin2 * .333;	    if (z__[nn - 5] > z__[nn - 7]) {		return 0;	    }	    b1 = z__[nn - 5] / z__[nn - 7];	    b2 = b1;	    if (b2 == 0.) {		goto L80;	    }	    i__1 = (*i0 << 2) - 1 + *pp;	    for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {		if (z__[i4] > z__[i4 - 2]) {		    return 0;		}		b1 *= z__[i4] / z__[i4 - 2];		b2 += b1;		if (b1 * 100. < b2) {		    goto L80;		}/* L70: */	    }L80:	    b2 = sqrt(b2 * 1.05);/* Computing 2nd power */	    d__1 = b2;	    a2 = *dmin2 / (d__1 * d__1 + 1.);	    gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[		    nn - 9]) - a2;	    if (gap2 > 0. && gap2 > b2 * a2) {/* Computing MAX */		d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);		s = max(d__1,d__2);	    } else {/* Computing MAX */		d__1 = s, d__2 = a2 * (1. - b2 * 1.01);		s = max(d__1,d__2);	    }	} else {	    s = *dmin2 * .25;	    *ttype = -11;	}    } else if (*n0in > *n0 + 2) {/*        Case 12, more than two eigenvalues deflated. No information. */	s = 0.;	*ttype = -12;    }    *tau = s;    return 0;/*     End of DLASQ4 */} /* _starpu_dlasq4_ */
 |