| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 | /* dlasda.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__0 = 0;static doublereal c_b11 = 0.;static doublereal c_b12 = 1.;static integer c__1 = 1;static integer c__2 = 2;/* Subroutine */ int _starpu_dlasda_(integer *icompq, integer *smlsiz, integer *n, 	integer *sqre, doublereal *d__, doublereal *e, doublereal *u, integer 	*ldu, doublereal *vt, integer *k, doublereal *difl, doublereal *difr, 	doublereal *z__, doublereal *poles, integer *givptr, integer *givcol, 	integer *ldgcol, integer *perm, doublereal *givnum, doublereal *c__, 	doublereal *s, doublereal *work, integer *iwork, integer *info){    /* System generated locals */    integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, difl_dim1, 	    difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, 	    poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, 	    z_dim1, z_offset, i__1, i__2;    /* Builtin functions */    integer pow_ii(integer *, integer *);    /* Local variables */    integer i__, j, m, i1, ic, lf, nd, ll, nl, vf, nr, vl, im1, ncc, nlf, nrf,	     vfi, iwk, vli, lvl, nru, ndb1, nlp1, lvl2, nrp1;    doublereal beta;    integer idxq, nlvl;    doublereal alpha;    integer inode, ndiml, ndimr, idxqi, itemp;    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer sqrei;    extern /* Subroutine */ int _starpu_dlasd6_(integer *, integer *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, integer *, integer *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 	     doublereal *, integer *, integer *);    integer nwork1, nwork2;    extern /* Subroutine */ int _starpu_dlasdq_(char *, integer *, integer *, integer 	    *, integer *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dlasdt_(integer *, integer *, 	    integer *, integer *, integer *, integer *, integer *), _starpu_dlaset_(	    char *, integer *, integer *, doublereal *, doublereal *, 	    doublereal *, integer *), _starpu_xerbla_(char *, integer *);    integer smlszp;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  Using a divide and conquer approach, DLASDA computes the singular *//*  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix *//*  B with diagonal D and offdiagonal E, where M = N + SQRE. The *//*  algorithm computes the singular values in the SVD B = U * S * VT. *//*  The orthogonal matrices U and VT are optionally computed in *//*  compact form. *//*  A related subroutine, DLASD0, computes the singular values and *//*  the singular vectors in explicit form. *//*  Arguments *//*  ========= *//*  ICOMPQ (input) INTEGER *//*         Specifies whether singular vectors are to be computed *//*         in compact form, as follows *//*         = 0: Compute singular values only. *//*         = 1: Compute singular vectors of upper bidiagonal *//*              matrix in compact form. *//*  SMLSIZ (input) INTEGER *//*         The maximum size of the subproblems at the bottom of the *//*         computation tree. *//*  N      (input) INTEGER *//*         The row dimension of the upper bidiagonal matrix. This is *//*         also the dimension of the main diagonal array D. *//*  SQRE   (input) INTEGER *//*         Specifies the column dimension of the bidiagonal matrix. *//*         = 0: The bidiagonal matrix has column dimension M = N; *//*         = 1: The bidiagonal matrix has column dimension M = N + 1. *//*  D      (input/output) DOUBLE PRECISION array, dimension ( N ) *//*         On entry D contains the main diagonal of the bidiagonal *//*         matrix. On exit D, if INFO = 0, contains its singular values. *//*  E      (input) DOUBLE PRECISION array, dimension ( M-1 ) *//*         Contains the subdiagonal entries of the bidiagonal matrix. *//*         On exit, E has been destroyed. *//*  U      (output) DOUBLE PRECISION array, *//*         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced *//*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left *//*         singular vector matrices of all subproblems at the bottom *//*         level. *//*  LDU    (input) INTEGER, LDU = > N. *//*         The leading dimension of arrays U, VT, DIFL, DIFR, POLES, *//*         GIVNUM, and Z. *//*  VT     (output) DOUBLE PRECISION array, *//*         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced *//*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right *//*         singular vector matrices of all subproblems at the bottom *//*         level. *//*  K      (output) INTEGER array, *//*         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0. *//*         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th *//*         secular equation on the computation tree. *//*  DIFL   (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ), *//*         where NLVL = floor(log_2 (N/SMLSIZ))). *//*  DIFR   (output) DOUBLE PRECISION array, *//*                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and *//*                  dimension ( N ) if ICOMPQ = 0. *//*         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1) *//*         record distances between singular values on the I-th *//*         level and singular values on the (I -1)-th level, and *//*         DIFR(1:N, 2 * I ) contains the normalizing factors for *//*         the right singular vector matrix. See DLASD8 for details. *//*  Z      (output) DOUBLE PRECISION array, *//*                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and *//*                  dimension ( N ) if ICOMPQ = 0. *//*         The first K elements of Z(1, I) contain the components of *//*         the deflation-adjusted updating row vector for subproblems *//*         on the I-th level. *//*  POLES  (output) DOUBLE PRECISION array, *//*         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced *//*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and *//*         POLES(1, 2*I) contain  the new and old singular values *//*         involved in the secular equations on the I-th level. *//*  GIVPTR (output) INTEGER array, *//*         dimension ( N ) if ICOMPQ = 1, and not referenced if *//*         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records *//*         the number of Givens rotations performed on the I-th *//*         problem on the computation tree. *//*  GIVCOL (output) INTEGER array, *//*         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not *//*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, *//*         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations *//*         of Givens rotations performed on the I-th level on the *//*         computation tree. *//*  LDGCOL (input) INTEGER, LDGCOL = > N. *//*         The leading dimension of arrays GIVCOL and PERM. *//*  PERM   (output) INTEGER array, *//*         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced *//*         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records *//*         permutations done on the I-th level of the computation tree. *//*  GIVNUM (output) DOUBLE PRECISION array, *//*         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not *//*         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I, *//*         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S- *//*         values of Givens rotations performed on the I-th level on *//*         the computation tree. *//*  C      (output) DOUBLE PRECISION array, *//*         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. *//*         If ICOMPQ = 1 and the I-th subproblem is not square, on exit, *//*         C( I ) contains the C-value of a Givens rotation related to *//*         the right null space of the I-th subproblem. *//*  S      (output) DOUBLE PRECISION array, dimension ( N ) if *//*         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1 *//*         and the I-th subproblem is not square, on exit, S( I ) *//*         contains the S-value of a Givens rotation related to *//*         the right null space of the I-th subproblem. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension *//*         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)). *//*  IWORK  (workspace) INTEGER array. *//*         Dimension must be at least (7 * N). *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an singular value did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    givnum_dim1 = *ldu;    givnum_offset = 1 + givnum_dim1;    givnum -= givnum_offset;    poles_dim1 = *ldu;    poles_offset = 1 + poles_dim1;    poles -= poles_offset;    z_dim1 = *ldu;    z_offset = 1 + z_dim1;    z__ -= z_offset;    difr_dim1 = *ldu;    difr_offset = 1 + difr_dim1;    difr -= difr_offset;    difl_dim1 = *ldu;    difl_offset = 1 + difl_dim1;    difl -= difl_offset;    vt_dim1 = *ldu;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    --k;    --givptr;    perm_dim1 = *ldgcol;    perm_offset = 1 + perm_dim1;    perm -= perm_offset;    givcol_dim1 = *ldgcol;    givcol_offset = 1 + givcol_dim1;    givcol -= givcol_offset;    --c__;    --s;    --work;    --iwork;    /* Function Body */    *info = 0;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*smlsiz < 3) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*sqre < 0 || *sqre > 1) {	*info = -4;    } else if (*ldu < *n + *sqre) {	*info = -8;    } else if (*ldgcol < *n) {	*info = -17;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLASDA", &i__1);	return 0;    }    m = *n + *sqre;/*     If the input matrix is too small, call DLASDQ to find the SVD. */    if (*n <= *smlsiz) {	if (*icompq == 0) {	    _starpu_dlasdq_("U", sqre, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[		    vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &		    work[1], info);	} else {	    _starpu_dlasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset], ldu, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], 		    info);	}	return 0;    }/*     Book-keeping and  set up the computation tree. */    inode = 1;    ndiml = inode + *n;    ndimr = ndiml + *n;    idxq = ndimr + *n;    iwk = idxq + *n;    ncc = 0;    nru = 0;    smlszp = *smlsiz + 1;    vf = 1;    vl = vf + m;    nwork1 = vl + m;    nwork2 = nwork1 + smlszp * smlszp;    _starpu_dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 	    smlsiz);/*     for the nodes on bottom level of the tree, solve *//*     their subproblems by DLASDQ. */    ndb1 = (nd + 1) / 2;    i__1 = nd;    for (i__ = ndb1; i__ <= i__1; ++i__) {/*        IC : center row of each node *//*        NL : number of rows of left  subproblem *//*        NR : number of rows of right subproblem *//*        NLF: starting row of the left   subproblem *//*        NRF: starting row of the right  subproblem */	i1 = i__ - 1;	ic = iwork[inode + i1];	nl = iwork[ndiml + i1];	nlp1 = nl + 1;	nr = iwork[ndimr + i1];	nlf = ic - nl;	nrf = ic + 1;	idxqi = idxq + nlf - 2;	vfi = vf + nlf - 1;	vli = vl + nlf - 1;	sqrei = 1;	if (*icompq == 0) {	    _starpu_dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &work[nwork1], &smlszp);	    _starpu_dlasdq_("U", &sqrei, &nl, &nlp1, &nru, &ncc, &d__[nlf], &e[nlf], &		    work[nwork1], &smlszp, &work[nwork2], &nl, &work[nwork2], 		    &nl, &work[nwork2], info);	    itemp = nwork1 + nl * smlszp;	    _starpu_dcopy_(&nlp1, &work[nwork1], &c__1, &work[vfi], &c__1);	    _starpu_dcopy_(&nlp1, &work[itemp], &c__1, &work[vli], &c__1);	} else {	    _starpu_dlaset_("A", &nl, &nl, &c_b11, &c_b12, &u[nlf + u_dim1], ldu);	    _starpu_dlaset_("A", &nlp1, &nlp1, &c_b11, &c_b12, &vt[nlf + vt_dim1], 		    ldu);	    _starpu_dlasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &		    vt[nlf + vt_dim1], ldu, &u[nlf + u_dim1], ldu, &u[nlf + 		    u_dim1], ldu, &work[nwork1], info);	    _starpu_dcopy_(&nlp1, &vt[nlf + vt_dim1], &c__1, &work[vfi], &c__1);	    _starpu_dcopy_(&nlp1, &vt[nlf + nlp1 * vt_dim1], &c__1, &work[vli], &c__1)		    ;	}	if (*info != 0) {	    return 0;	}	i__2 = nl;	for (j = 1; j <= i__2; ++j) {	    iwork[idxqi + j] = j;/* L10: */	}	if (i__ == nd && *sqre == 0) {	    sqrei = 0;	} else {	    sqrei = 1;	}	idxqi += nlp1;	vfi += nlp1;	vli += nlp1;	nrp1 = nr + sqrei;	if (*icompq == 0) {	    _starpu_dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &work[nwork1], &smlszp);	    _starpu_dlasdq_("U", &sqrei, &nr, &nrp1, &nru, &ncc, &d__[nrf], &e[nrf], &		    work[nwork1], &smlszp, &work[nwork2], &nr, &work[nwork2], 		    &nr, &work[nwork2], info);	    itemp = nwork1 + (nrp1 - 1) * smlszp;	    _starpu_dcopy_(&nrp1, &work[nwork1], &c__1, &work[vfi], &c__1);	    _starpu_dcopy_(&nrp1, &work[itemp], &c__1, &work[vli], &c__1);	} else {	    _starpu_dlaset_("A", &nr, &nr, &c_b11, &c_b12, &u[nrf + u_dim1], ldu);	    _starpu_dlaset_("A", &nrp1, &nrp1, &c_b11, &c_b12, &vt[nrf + vt_dim1], 		    ldu);	    _starpu_dlasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &		    vt[nrf + vt_dim1], ldu, &u[nrf + u_dim1], ldu, &u[nrf + 		    u_dim1], ldu, &work[nwork1], info);	    _starpu_dcopy_(&nrp1, &vt[nrf + vt_dim1], &c__1, &work[vfi], &c__1);	    _starpu_dcopy_(&nrp1, &vt[nrf + nrp1 * vt_dim1], &c__1, &work[vli], &c__1)		    ;	}	if (*info != 0) {	    return 0;	}	i__2 = nr;	for (j = 1; j <= i__2; ++j) {	    iwork[idxqi + j] = j;/* L20: */	}/* L30: */    }/*     Now conquer each subproblem bottom-up. */    j = pow_ii(&c__2, &nlvl);    for (lvl = nlvl; lvl >= 1; --lvl) {	lvl2 = (lvl << 1) - 1;/*        Find the first node LF and last node LL on *//*        the current level LVL. */	if (lvl == 1) {	    lf = 1;	    ll = 1;	} else {	    i__1 = lvl - 1;	    lf = pow_ii(&c__2, &i__1);	    ll = (lf << 1) - 1;	}	i__1 = ll;	for (i__ = lf; i__ <= i__1; ++i__) {	    im1 = i__ - 1;	    ic = iwork[inode + im1];	    nl = iwork[ndiml + im1];	    nr = iwork[ndimr + im1];	    nlf = ic - nl;	    nrf = ic + 1;	    if (i__ == ll) {		sqrei = *sqre;	    } else {		sqrei = 1;	    }	    vfi = vf + nlf - 1;	    vli = vl + nlf - 1;	    idxqi = idxq + nlf - 1;	    alpha = d__[ic];	    beta = e[ic];	    if (*icompq == 0) {		_starpu_dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &			work[vli], &alpha, &beta, &iwork[idxqi], &perm[			perm_offset], &givptr[1], &givcol[givcol_offset], 			ldgcol, &givnum[givnum_offset], ldu, &poles[			poles_offset], &difl[difl_offset], &difr[difr_offset], 			 &z__[z_offset], &k[1], &c__[1], &s[1], &work[nwork1], 			 &iwork[iwk], info);	    } else {		--j;		_starpu_dlasd6_(icompq, &nl, &nr, &sqrei, &d__[nlf], &work[vfi], &			work[vli], &alpha, &beta, &iwork[idxqi], &perm[nlf + 			lvl * perm_dim1], &givptr[j], &givcol[nlf + lvl2 * 			givcol_dim1], ldgcol, &givnum[nlf + lvl2 * 			givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &			difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * 			difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[j], 			&s[j], &work[nwork1], &iwork[iwk], info);	    }	    if (*info != 0) {		return 0;	    }/* L40: */	}/* L50: */    }    return 0;/*     End of DLASDA */} /* _starpu_dlasda_ */
 |