| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 | 
							- /* dlasd5.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dlasd5_(integer *i__, doublereal *d__, doublereal *z__, 
 
- 	doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal *
 
- 	work)
 
- {
 
-     /* System generated locals */
 
-     doublereal d__1;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal b, c__, w, del, tau, delsq;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  This subroutine computes the square root of the I-th eigenvalue */
 
- /*  of a positive symmetric rank-one modification of a 2-by-2 diagonal */
 
- /*  matrix */
 
- /*             diag( D ) * diag( D ) +  RHO *  Z * transpose(Z) . */
 
- /*  The diagonal entries in the array D are assumed to satisfy */
 
- /*             0 <= D(i) < D(j)  for  i < j . */
 
- /*  We also assume RHO > 0 and that the Euclidean norm of the vector */
 
- /*  Z is one. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  I      (input) INTEGER */
 
- /*         The index of the eigenvalue to be computed.  I = 1 or I = 2. */
 
- /*  D      (input) DOUBLE PRECISION array, dimension ( 2 ) */
 
- /*         The original eigenvalues.  We assume 0 <= D(1) < D(2). */
 
- /*  Z      (input) DOUBLE PRECISION array, dimension ( 2 ) */
 
- /*         The components of the updating vector. */
 
- /*  DELTA  (output) DOUBLE PRECISION array, dimension ( 2 ) */
 
- /*         Contains (D(j) - sigma_I) in its  j-th component. */
 
- /*         The vector DELTA contains the information necessary */
 
- /*         to construct the eigenvectors. */
 
- /*  RHO    (input) DOUBLE PRECISION */
 
- /*         The scalar in the symmetric updating formula. */
 
- /*  DSIGMA (output) DOUBLE PRECISION */
 
- /*         The computed sigma_I, the I-th updated eigenvalue. */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, dimension ( 2 ) */
 
- /*         WORK contains (D(j) + sigma_I) in its  j-th component. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ren-Cang Li, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --work;
 
-     --delta;
 
-     --z__;
 
-     --d__;
 
-     /* Function Body */
 
-     del = d__[2] - d__[1];
 
-     delsq = del * (d__[2] + d__[1]);
 
-     if (*i__ == 1) {
 
- 	w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] * 
 
- 		z__[1] / (d__[1] * 3. + d__[2])) / del + 1.;
 
- 	if (w > 0.) {
 
- 	    b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 
- 	    c__ = *rho * z__[1] * z__[1] * delsq;
 
- /*           B > ZERO, always */
 
- /*           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */
 
- 	    tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));
 
- /*           The following TAU is DSIGMA - D( 1 ) */
 
- 	    tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
 
- 	    *dsigma = d__[1] + tau;
 
- 	    delta[1] = -tau;
 
- 	    delta[2] = del - tau;
 
- 	    work[1] = d__[1] * 2. + tau;
 
- 	    work[2] = d__[1] + tau + d__[2];
 
- /*           DELTA( 1 ) = -Z( 1 ) / TAU */
 
- /*           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */
 
- 	} else {
 
- 	    b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 
- 	    c__ = *rho * z__[2] * z__[2] * delsq;
 
- /*           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
 
- 	    if (b > 0.) {
 
- 		tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));
 
- 	    } else {
 
- 		tau = (b - sqrt(b * b + c__ * 4.)) / 2.;
 
- 	    }
 
- /*           The following TAU is DSIGMA - D( 2 ) */
 
- 	    tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1)));
 
- 	    *dsigma = d__[2] + tau;
 
- 	    delta[1] = -(del + tau);
 
- 	    delta[2] = -tau;
 
- 	    work[1] = d__[1] + tau + d__[2];
 
- 	    work[2] = d__[2] * 2. + tau;
 
- /*           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
 
- /*           DELTA( 2 ) = -Z( 2 ) / TAU */
 
- 	}
 
- /*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
 
- /*        DELTA( 1 ) = DELTA( 1 ) / TEMP */
 
- /*        DELTA( 2 ) = DELTA( 2 ) / TEMP */
 
-     } else {
 
- /*        Now I=2 */
 
- 	b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 
- 	c__ = *rho * z__[2] * z__[2] * delsq;
 
- /*        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
 
- 	if (b > 0.) {
 
- 	    tau = (b + sqrt(b * b + c__ * 4.)) / 2.;
 
- 	} else {
 
- 	    tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));
 
- 	}
 
- /*        The following TAU is DSIGMA - D( 2 ) */
 
- 	tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
 
- 	*dsigma = d__[2] + tau;
 
- 	delta[1] = -(del + tau);
 
- 	delta[2] = -tau;
 
- 	work[1] = d__[1] + tau + d__[2];
 
- 	work[2] = d__[2] * 2. + tau;
 
- /*        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
 
- /*        DELTA( 2 ) = -Z( 2 ) / TAU */
 
- /*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
 
- /*        DELTA( 1 ) = DELTA( 1 ) / TEMP */
 
- /*        DELTA( 2 ) = DELTA( 2 ) / TEMP */
 
-     }
 
-     return 0;
 
- /*     End of DLASD5 */
 
- } /* _starpu_dlasd5_ */
 
 
  |