| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011 | /* dlasd4.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dlasd4_(integer *n, integer *i__, doublereal *d__, 	doublereal *z__, doublereal *delta, doublereal *rho, doublereal *	sigma, doublereal *work, integer *info){    /* System generated locals */    integer i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal a, b, c__;    integer j;    doublereal w, dd[3];    integer ii;    doublereal dw, zz[3];    integer ip1;    doublereal eta, phi, eps, tau, psi;    integer iim1, iip1;    doublereal dphi, dpsi;    integer iter;    doublereal temp, prew, sg2lb, sg2ub, temp1, temp2, dtiim, delsq, dtiip;    integer niter;    doublereal dtisq;    logical swtch;    doublereal dtnsq;    extern /* Subroutine */ int _starpu_dlaed6_(integer *, logical *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *)	    , _starpu_dlasd5_(integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *);    doublereal delsq2, dtnsq1;    logical swtch3;    extern doublereal _starpu_dlamch_(char *);    logical orgati;    doublereal erretm, dtipsq, rhoinv;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This subroutine computes the square root of the I-th updated *//*  eigenvalue of a positive symmetric rank-one modification to *//*  a positive diagonal matrix whose entries are given as the squares *//*  of the corresponding entries in the array d, and that *//*         0 <= D(i) < D(j)  for  i < j *//*  and that RHO > 0. This is arranged by the calling routine, and is *//*  no loss in generality.  The rank-one modified system is thus *//*         diag( D ) * diag( D ) +  RHO *  Z * Z_transpose. *//*  where we assume the Euclidean norm of Z is 1. *//*  The method consists of approximating the rational functions in the *//*  secular equation by simpler interpolating rational functions. *//*  Arguments *//*  ========= *//*  N      (input) INTEGER *//*         The length of all arrays. *//*  I      (input) INTEGER *//*         The index of the eigenvalue to be computed.  1 <= I <= N. *//*  D      (input) DOUBLE PRECISION array, dimension ( N ) *//*         The original eigenvalues.  It is assumed that they are in *//*         order, 0 <= D(I) < D(J)  for I < J. *//*  Z      (input) DOUBLE PRECISION array, dimension ( N ) *//*         The components of the updating vector. *//*  DELTA  (output) DOUBLE PRECISION array, dimension ( N ) *//*         If N .ne. 1, DELTA contains (D(j) - sigma_I) in its  j-th *//*         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA *//*         contains the information necessary to construct the *//*         (singular) eigenvectors. *//*  RHO    (input) DOUBLE PRECISION *//*         The scalar in the symmetric updating formula. *//*  SIGMA  (output) DOUBLE PRECISION *//*         The computed sigma_I, the I-th updated eigenvalue. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension ( N ) *//*         If N .ne. 1, WORK contains (D(j) + sigma_I) in its  j-th *//*         component.  If N = 1, then WORK( 1 ) = 1. *//*  INFO   (output) INTEGER *//*         = 0:  successful exit *//*         > 0:  if INFO = 1, the updating process failed. *//*  Internal Parameters *//*  =================== *//*  Logical variable ORGATI (origin-at-i?) is used for distinguishing *//*  whether D(i) or D(i+1) is treated as the origin. *//*            ORGATI = .true.    origin at i *//*            ORGATI = .false.   origin at i+1 *//*  Logical variable SWTCH3 (switch-for-3-poles?) is for noting *//*  if we are working with THREE poles! *//*  MAXIT is the maximum number of iterations allowed for each *//*  eigenvalue. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ren-Cang Li, Computer Science Division, University of California *//*     at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Since this routine is called in an inner loop, we do no argument *//*     checking. *//*     Quick return for N=1 and 2. */    /* Parameter adjustments */    --work;    --delta;    --z__;    --d__;    /* Function Body */    *info = 0;    if (*n == 1) {/*        Presumably, I=1 upon entry */	*sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);	delta[1] = 1.;	work[1] = 1.;	return 0;    }    if (*n == 2) {	_starpu_dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);	return 0;    }/*     Compute machine epsilon */    eps = _starpu_dlamch_("Epsilon");    rhoinv = 1. / *rho;/*     The case I = N */    if (*i__ == *n) {/*        Initialize some basic variables */	ii = *n - 1;	niter = 1;/*        Calculate initial guess */	temp = *rho / 2.;/*        If ||Z||_2 is not one, then TEMP should be set to *//*        RHO * ||Z||_2^2 / TWO */	temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    work[j] = d__[j] + d__[*n] + temp1;	    delta[j] = d__[j] - d__[*n] - temp1;/* L10: */	}	psi = 0.;	i__1 = *n - 2;	for (j = 1; j <= i__1; ++j) {	    psi += z__[j] * z__[j] / (delta[j] * work[j]);/* L20: */	}	c__ = rhoinv + psi;	w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*		n] / (delta[*n] * work[*n]);	if (w <= 0.) {	    temp1 = sqrt(d__[*n] * d__[*n] + *rho);	    temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*		    n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] * 		    z__[*n] / *rho;/*           The following TAU is to approximate *//*           SIGMA_n^2 - D( N )*D( N ) */	    if (c__ <= temp) {		tau = *rho;	    } else {		delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);		a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*			n];		b = z__[*n] * z__[*n] * delsq;		if (a < 0.) {		    tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);		} else {		    tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);		}	    }/*           It can be proved that *//*               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO */	} else {	    delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);	    a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];	    b = z__[*n] * z__[*n] * delsq;/*           The following TAU is to approximate *//*           SIGMA_n^2 - D( N )*D( N ) */	    if (a < 0.) {		tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);	    } else {		tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);	    }/*           It can be proved that *//*           D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2 */	}/*        The following ETA is to approximate SIGMA_n - D( N ) */	eta = tau / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau));	*sigma = d__[*n] + eta;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    delta[j] = d__[j] - d__[*i__] - eta;	    work[j] = d__[j] + d__[*i__] + eta;/* L30: */	}/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = ii;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / (delta[j] * work[j]);	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L40: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	temp = z__[*n] / (delta[*n] * work[*n]);	phi = z__[*n] * temp;	dphi = temp * temp;	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 		+ dphi);	w = rhoinv + phi + psi;/*        Test for convergence */	if (abs(w) <= eps * erretm) {	    goto L240;	}/*        Calculate the new step */	++niter;	dtnsq1 = work[*n - 1] * delta[*n - 1];	dtnsq = work[*n] * delta[*n];	c__ = w - dtnsq1 * dpsi - dtnsq * dphi;	a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);	b = dtnsq * dtnsq1 * w;	if (c__ < 0.) {	    c__ = abs(c__);	}	if (c__ == 0.) {	    eta = *rho - *sigma * *sigma;	} else if (a >= 0.) {	    eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ 		    * 2.);	} else {	    eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))		    );	}/*        Note, eta should be positive if w is negative, and *//*        eta should be negative otherwise. However, *//*        if for some reason caused by roundoff, eta*w > 0, *//*        we simply use one Newton step instead. This way *//*        will guarantee eta*w < 0. */	if (w * eta > 0.) {	    eta = -w / (dpsi + dphi);	}	temp = eta - dtnsq;	if (temp > *rho) {	    eta = *rho + dtnsq;	}	tau += eta;	eta /= *sigma + sqrt(eta + *sigma * *sigma);	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    delta[j] -= eta;	    work[j] += eta;/* L50: */	}	*sigma += eta;/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = ii;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / (work[j] * delta[j]);	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L60: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	temp = z__[*n] / (work[*n] * delta[*n]);	phi = z__[*n] * temp;	dphi = temp * temp;	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 		+ dphi);	w = rhoinv + phi + psi;/*        Main loop to update the values of the array   DELTA */	iter = niter + 1;	for (niter = iter; niter <= 20; ++niter) {/*           Test for convergence */	    if (abs(w) <= eps * erretm) {		goto L240;	    }/*           Calculate the new step */	    dtnsq1 = work[*n - 1] * delta[*n - 1];	    dtnsq = work[*n] * delta[*n];	    c__ = w - dtnsq1 * dpsi - dtnsq * dphi;	    a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);	    b = dtnsq1 * dtnsq * w;	    if (a >= 0.) {		eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (			c__ * 2.);	    } else {		eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(			d__1))));	    }/*           Note, eta should be positive if w is negative, and *//*           eta should be negative otherwise. However, *//*           if for some reason caused by roundoff, eta*w > 0, *//*           we simply use one Newton step instead. This way *//*           will guarantee eta*w < 0. */	    if (w * eta > 0.) {		eta = -w / (dpsi + dphi);	    }	    temp = eta - dtnsq;	    if (temp <= 0.) {		eta /= 2.;	    }	    tau += eta;	    eta /= *sigma + sqrt(eta + *sigma * *sigma);	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		delta[j] -= eta;		work[j] += eta;/* L70: */	    }	    *sigma += eta;/*           Evaluate PSI and the derivative DPSI */	    dpsi = 0.;	    psi = 0.;	    erretm = 0.;	    i__1 = ii;	    for (j = 1; j <= i__1; ++j) {		temp = z__[j] / (work[j] * delta[j]);		psi += z__[j] * temp;		dpsi += temp * temp;		erretm += psi;/* L80: */	    }	    erretm = abs(erretm);/*           Evaluate PHI and the derivative DPHI */	    temp = z__[*n] / (work[*n] * delta[*n]);	    phi = z__[*n] * temp;	    dphi = temp * temp;	    erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (		    dpsi + dphi);	    w = rhoinv + phi + psi;/* L90: */	}/*        Return with INFO = 1, NITER = MAXIT and not converged */	*info = 1;	goto L240;/*        End for the case I = N */    } else {/*        The case for I < N */	niter = 1;	ip1 = *i__ + 1;/*        Calculate initial guess */	delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);	delsq2 = delsq / 2.;	temp = delsq2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + delsq2));	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    work[j] = d__[j] + d__[*i__] + temp;	    delta[j] = d__[j] - d__[*i__] - temp;/* L100: */	}	psi = 0.;	i__1 = *i__ - 1;	for (j = 1; j <= i__1; ++j) {	    psi += z__[j] * z__[j] / (work[j] * delta[j]);/* L110: */	}	phi = 0.;	i__1 = *i__ + 2;	for (j = *n; j >= i__1; --j) {	    phi += z__[j] * z__[j] / (work[j] * delta[j]);/* L120: */	}	c__ = rhoinv + psi + phi;	w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[		ip1] * z__[ip1] / (work[ip1] * delta[ip1]);	if (w > 0.) {/*           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 *//*           We choose d(i) as origin. */	    orgati = TRUE_;	    sg2lb = 0.;	    sg2ub = delsq2;	    a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];	    b = z__[*i__] * z__[*i__] * delsq;	    if (a > 0.) {		tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(			d__1))));	    } else {		tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (			c__ * 2.);	    }/*           TAU now is an estimation of SIGMA^2 - D( I )^2. The *//*           following, however, is the corresponding estimation of *//*           SIGMA - D( I ). */	    eta = tau / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau));	} else {/*           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 *//*           We choose d(i+1) as origin. */	    orgati = FALSE_;	    sg2lb = -delsq2;	    sg2ub = 0.;	    a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];	    b = z__[ip1] * z__[ip1] * delsq;	    if (a < 0.) {		tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(			d__1))));	    } else {		tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) / 			(c__ * 2.);	    }/*           TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The *//*           following, however, is the corresponding estimation of *//*           SIGMA - D( IP1 ). */	    eta = tau / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau, 		    abs(d__1))));	}	if (orgati) {	    ii = *i__;	    *sigma = d__[*i__] + eta;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		work[j] = d__[j] + d__[*i__] + eta;		delta[j] = d__[j] - d__[*i__] - eta;/* L130: */	    }	} else {	    ii = *i__ + 1;	    *sigma = d__[ip1] + eta;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		work[j] = d__[j] + d__[ip1] + eta;		delta[j] = d__[j] - d__[ip1] - eta;/* L140: */	    }	}	iim1 = ii - 1;	iip1 = ii + 1;/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = iim1;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / (work[j] * delta[j]);	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L150: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	dphi = 0.;	phi = 0.;	i__1 = iip1;	for (j = *n; j >= i__1; --j) {	    temp = z__[j] / (work[j] * delta[j]);	    phi += z__[j] * temp;	    dphi += temp * temp;	    erretm += phi;/* L160: */	}	w = rhoinv + phi + psi;/*        W is the value of the secular function with *//*        its ii-th element removed. */	swtch3 = FALSE_;	if (orgati) {	    if (w < 0.) {		swtch3 = TRUE_;	    }	} else {	    if (w > 0.) {		swtch3 = TRUE_;	    }	}	if (ii == 1 || ii == *n) {	    swtch3 = FALSE_;	}	temp = z__[ii] / (work[ii] * delta[ii]);	dw = dpsi + dphi + temp * temp;	temp = z__[ii] * temp;	w += temp;	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 		abs(tau) * dw;/*        Test for convergence */	if (abs(w) <= eps * erretm) {	    goto L240;	}	if (w <= 0.) {	    sg2lb = max(sg2lb,tau);	} else {	    sg2ub = min(sg2ub,tau);	}/*        Calculate the new step */	++niter;	if (! swtch3) {	    dtipsq = work[ip1] * delta[ip1];	    dtisq = work[*i__] * delta[*i__];	    if (orgati) {/* Computing 2nd power */		d__1 = z__[*i__] / dtisq;		c__ = w - dtipsq * dw + delsq * (d__1 * d__1);	    } else {/* Computing 2nd power */		d__1 = z__[ip1] / dtipsq;		c__ = w - dtisq * dw - delsq * (d__1 * d__1);	    }	    a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;	    b = dtipsq * dtisq * w;	    if (c__ == 0.) {		if (a == 0.) {		    if (orgati) {			a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + 				dphi);		    } else {			a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + 				dphi);		    }		}		eta = b / a;	    } else if (a <= 0.) {		eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (			c__ * 2.);	    } else {		eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(			d__1))));	    }	} else {/*           Interpolation using THREE most relevant poles */	    dtiim = work[iim1] * delta[iim1];	    dtiip = work[iip1] * delta[iip1];	    temp = rhoinv + psi + phi;	    if (orgati) {		temp1 = z__[iim1] / dtiim;		temp1 *= temp1;		c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *			 (d__[iim1] + d__[iip1]) * temp1;		zz[0] = z__[iim1] * z__[iim1];		if (dpsi < temp1) {		    zz[2] = dtiip * dtiip * dphi;		} else {		    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);		}	    } else {		temp1 = z__[iip1] / dtiip;		temp1 *= temp1;		c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *			 (d__[iim1] + d__[iip1]) * temp1;		if (dphi < temp1) {		    zz[0] = dtiim * dtiim * dpsi;		} else {		    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));		}		zz[2] = z__[iip1] * z__[iip1];	    }	    zz[1] = z__[ii] * z__[ii];	    dd[0] = dtiim;	    dd[1] = delta[ii] * work[ii];	    dd[2] = dtiip;	    _starpu_dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);	    if (*info != 0) {		goto L240;	    }	}/*        Note, eta should be positive if w is negative, and *//*        eta should be negative otherwise. However, *//*        if for some reason caused by roundoff, eta*w > 0, *//*        we simply use one Newton step instead. This way *//*        will guarantee eta*w < 0. */	if (w * eta >= 0.) {	    eta = -w / dw;	}	if (orgati) {	    temp1 = work[*i__] * delta[*i__];	    temp = eta - temp1;	} else {	    temp1 = work[ip1] * delta[ip1];	    temp = eta - temp1;	}	if (temp > sg2ub || temp < sg2lb) {	    if (w < 0.) {		eta = (sg2ub - tau) / 2.;	    } else {		eta = (sg2lb - tau) / 2.;	    }	}	tau += eta;	eta /= *sigma + sqrt(*sigma * *sigma + eta);	prew = w;	*sigma += eta;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    work[j] += eta;	    delta[j] -= eta;/* L170: */	}/*        Evaluate PSI and the derivative DPSI */	dpsi = 0.;	psi = 0.;	erretm = 0.;	i__1 = iim1;	for (j = 1; j <= i__1; ++j) {	    temp = z__[j] / (work[j] * delta[j]);	    psi += z__[j] * temp;	    dpsi += temp * temp;	    erretm += psi;/* L180: */	}	erretm = abs(erretm);/*        Evaluate PHI and the derivative DPHI */	dphi = 0.;	phi = 0.;	i__1 = iip1;	for (j = *n; j >= i__1; --j) {	    temp = z__[j] / (work[j] * delta[j]);	    phi += z__[j] * temp;	    dphi += temp * temp;	    erretm += phi;/* L190: */	}	temp = z__[ii] / (work[ii] * delta[ii]);	dw = dpsi + dphi + temp * temp;	temp = z__[ii] * temp;	w = rhoinv + phi + psi + temp;	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 		abs(tau) * dw;	if (w <= 0.) {	    sg2lb = max(sg2lb,tau);	} else {	    sg2ub = min(sg2ub,tau);	}	swtch = FALSE_;	if (orgati) {	    if (-w > abs(prew) / 10.) {		swtch = TRUE_;	    }	} else {	    if (w > abs(prew) / 10.) {		swtch = TRUE_;	    }	}/*        Main loop to update the values of the array   DELTA and WORK */	iter = niter + 1;	for (niter = iter; niter <= 20; ++niter) {/*           Test for convergence */	    if (abs(w) <= eps * erretm) {		goto L240;	    }/*           Calculate the new step */	    if (! swtch3) {		dtipsq = work[ip1] * delta[ip1];		dtisq = work[*i__] * delta[*i__];		if (! swtch) {		    if (orgati) {/* Computing 2nd power */			d__1 = z__[*i__] / dtisq;			c__ = w - dtipsq * dw + delsq * (d__1 * d__1);		    } else {/* Computing 2nd power */			d__1 = z__[ip1] / dtipsq;			c__ = w - dtisq * dw - delsq * (d__1 * d__1);		    }		} else {		    temp = z__[ii] / (work[ii] * delta[ii]);		    if (orgati) {			dpsi += temp * temp;		    } else {			dphi += temp * temp;		    }		    c__ = w - dtisq * dpsi - dtipsq * dphi;		}		a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;		b = dtipsq * dtisq * w;		if (c__ == 0.) {		    if (a == 0.) {			if (! swtch) {			    if (orgati) {				a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * 					(dpsi + dphi);			    } else {				a = z__[ip1] * z__[ip1] + dtisq * dtisq * (					dpsi + dphi);			    }			} else {			    a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;			}		    }		    eta = b / a;		} else if (a <= 0.) {		    eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))			     / (c__ * 2.);		} else {		    eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, 			    abs(d__1))));		}	    } else {/*              Interpolation using THREE most relevant poles */		dtiim = work[iim1] * delta[iim1];		dtiip = work[iip1] * delta[iip1];		temp = rhoinv + psi + phi;		if (swtch) {		    c__ = temp - dtiim * dpsi - dtiip * dphi;		    zz[0] = dtiim * dtiim * dpsi;		    zz[2] = dtiip * dtiip * dphi;		} else {		    if (orgati) {			temp1 = z__[iim1] / dtiim;			temp1 *= temp1;			temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[				iip1]) * temp1;			c__ = temp - dtiip * (dpsi + dphi) - temp2;			zz[0] = z__[iim1] * z__[iim1];			if (dpsi < temp1) {			    zz[2] = dtiip * dtiip * dphi;			} else {			    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);			}		    } else {			temp1 = z__[iip1] / dtiip;			temp1 *= temp1;			temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[				iip1]) * temp1;			c__ = temp - dtiim * (dpsi + dphi) - temp2;			if (dphi < temp1) {			    zz[0] = dtiim * dtiim * dpsi;			} else {			    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));			}			zz[2] = z__[iip1] * z__[iip1];		    }		}		dd[0] = dtiim;		dd[1] = delta[ii] * work[ii];		dd[2] = dtiip;		_starpu_dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);		if (*info != 0) {		    goto L240;		}	    }/*           Note, eta should be positive if w is negative, and *//*           eta should be negative otherwise. However, *//*           if for some reason caused by roundoff, eta*w > 0, *//*           we simply use one Newton step instead. This way *//*           will guarantee eta*w < 0. */	    if (w * eta >= 0.) {		eta = -w / dw;	    }	    if (orgati) {		temp1 = work[*i__] * delta[*i__];		temp = eta - temp1;	    } else {		temp1 = work[ip1] * delta[ip1];		temp = eta - temp1;	    }	    if (temp > sg2ub || temp < sg2lb) {		if (w < 0.) {		    eta = (sg2ub - tau) / 2.;		} else {		    eta = (sg2lb - tau) / 2.;		}	    }	    tau += eta;	    eta /= *sigma + sqrt(*sigma * *sigma + eta);	    *sigma += eta;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		work[j] += eta;		delta[j] -= eta;/* L200: */	    }	    prew = w;/*           Evaluate PSI and the derivative DPSI */	    dpsi = 0.;	    psi = 0.;	    erretm = 0.;	    i__1 = iim1;	    for (j = 1; j <= i__1; ++j) {		temp = z__[j] / (work[j] * delta[j]);		psi += z__[j] * temp;		dpsi += temp * temp;		erretm += psi;/* L210: */	    }	    erretm = abs(erretm);/*           Evaluate PHI and the derivative DPHI */	    dphi = 0.;	    phi = 0.;	    i__1 = iip1;	    for (j = *n; j >= i__1; --j) {		temp = z__[j] / (work[j] * delta[j]);		phi += z__[j] * temp;		dphi += temp * temp;		erretm += phi;/* L220: */	    }	    temp = z__[ii] / (work[ii] * delta[ii]);	    dw = dpsi + dphi + temp * temp;	    temp = z__[ii] * temp;	    w = rhoinv + phi + psi + temp;	    erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. 		    + abs(tau) * dw;	    if (w * prew > 0. && abs(w) > abs(prew) / 10.) {		swtch = ! swtch;	    }	    if (w <= 0.) {		sg2lb = max(sg2lb,tau);	    } else {		sg2ub = min(sg2ub,tau);	    }/* L230: */	}/*        Return with INFO = 1, NITER = MAXIT and not converged */	*info = 1;    }L240:    return 0;/*     End of DLASD4 */} /* _starpu_dlasd4_ */
 |