| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 | /* dlasd3.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__0 = 0;static doublereal c_b13 = 1.;static doublereal c_b26 = 0.;/* Subroutine */ int _starpu_dlasd3_(integer *nl, integer *nr, integer *sqre, integer 	*k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma, 	doublereal *u, integer *ldu, doublereal *u2, integer *ldu2, 	doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2, 	integer *idxc, integer *ctot, doublereal *z__, integer *info){    /* System generated locals */    integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, 	    vt_offset, vt2_dim1, vt2_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    integer i__, j, m, n, jc;    doublereal rho;    integer nlp1, nlp2, nrp1;    doublereal temp;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *);    integer ctemp;    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    integer ktemp;    extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);    extern /* Subroutine */ int _starpu_dlasd4_(integer *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, integer *), _starpu_dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), _starpu_dlacpy_(char *, integer *, integer 	    *, doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASD3 finds all the square roots of the roots of the secular *//*  equation, as defined by the values in D and Z.  It makes the *//*  appropriate calls to DLASD4 and then updates the singular *//*  vectors by matrix multiplication. *//*  This code makes very mild assumptions about floating point *//*  arithmetic. It will work on machines with a guard digit in *//*  add/subtract, or on those binary machines without guard digits *//*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. *//*  It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none. *//*  DLASD3 is called from DLASD1. *//*  Arguments *//*  ========= *//*  NL     (input) INTEGER *//*         The row dimension of the upper block.  NL >= 1. *//*  NR     (input) INTEGER *//*         The row dimension of the lower block.  NR >= 1. *//*  SQRE   (input) INTEGER *//*         = 0: the lower block is an NR-by-NR square matrix. *//*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *//*         The bidiagonal matrix has N = NL + NR + 1 rows and *//*         M = N + SQRE >= N columns. *//*  K      (input) INTEGER *//*         The size of the secular equation, 1 =< K = < N. *//*  D      (output) DOUBLE PRECISION array, dimension(K) *//*         On exit the square roots of the roots of the secular equation, *//*         in ascending order. *//*  Q      (workspace) DOUBLE PRECISION array, *//*                     dimension at least (LDQ,K). *//*  LDQ    (input) INTEGER *//*         The leading dimension of the array Q.  LDQ >= K. *//*  DSIGMA (input) DOUBLE PRECISION array, dimension(K) *//*         The first K elements of this array contain the old roots *//*         of the deflated updating problem.  These are the poles *//*         of the secular equation. *//*  U      (output) DOUBLE PRECISION array, dimension (LDU, N) *//*         The last N - K columns of this matrix contain the deflated *//*         left singular vectors. *//*  LDU    (input) INTEGER *//*         The leading dimension of the array U.  LDU >= N. *//*  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N) *//*         The first K columns of this matrix contain the non-deflated *//*         left singular vectors for the split problem. *//*  LDU2   (input) INTEGER *//*         The leading dimension of the array U2.  LDU2 >= N. *//*  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M) *//*         The last M - K columns of VT' contain the deflated *//*         right singular vectors. *//*  LDVT   (input) INTEGER *//*         The leading dimension of the array VT.  LDVT >= N. *//*  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) *//*         The first K columns of VT2' contain the non-deflated *//*         right singular vectors for the split problem. *//*  LDVT2  (input) INTEGER *//*         The leading dimension of the array VT2.  LDVT2 >= N. *//*  IDXC   (input) INTEGER array, dimension ( N ) *//*         The permutation used to arrange the columns of U (and rows of *//*         VT) into three groups:  the first group contains non-zero *//*         entries only at and above (or before) NL +1; the second *//*         contains non-zero entries only at and below (or after) NL+2; *//*         and the third is dense. The first column of U and the row of *//*         VT are treated separately, however. *//*         The rows of the singular vectors found by DLASD4 *//*         must be likewise permuted before the matrix multiplies can *//*         take place. *//*  CTOT   (input) INTEGER array, dimension ( 4 ) *//*         A count of the total number of the various types of columns *//*         in U (or rows in VT), as described in IDXC. The fourth column *//*         type is any column which has been deflated. *//*  Z      (input) DOUBLE PRECISION array, dimension (K) *//*         The first K elements of this array contain the components *//*         of the deflation-adjusted updating row vector. *//*  INFO   (output) INTEGER *//*         = 0:  successful exit. *//*         < 0:  if INFO = -i, the i-th argument had an illegal value. *//*         > 0:  if INFO = 1, an singular value did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --dsigma;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    u2_dim1 = *ldu2;    u2_offset = 1 + u2_dim1;    u2 -= u2_offset;    vt_dim1 = *ldvt;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    vt2_dim1 = *ldvt2;    vt2_offset = 1 + vt2_dim1;    vt2 -= vt2_offset;    --idxc;    --ctot;    --z__;    /* Function Body */    *info = 0;    if (*nl < 1) {	*info = -1;    } else if (*nr < 1) {	*info = -2;    } else if (*sqre != 1 && *sqre != 0) {	*info = -3;    }    n = *nl + *nr + 1;    m = n + *sqre;    nlp1 = *nl + 1;    nlp2 = *nl + 2;    if (*k < 1 || *k > n) {	*info = -4;    } else if (*ldq < *k) {	*info = -7;    } else if (*ldu < n) {	*info = -10;    } else if (*ldu2 < n) {	*info = -12;    } else if (*ldvt < m) {	*info = -14;    } else if (*ldvt2 < m) {	*info = -16;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLASD3", &i__1);	return 0;    }/*     Quick return if possible */    if (*k == 1) {	d__[1] = abs(z__[1]);	_starpu_dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);	if (z__[1] > 0.) {	    _starpu_dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);	} else {	    i__1 = n;	    for (i__ = 1; i__ <= i__1; ++i__) {		u[i__ + u_dim1] = -u2[i__ + u2_dim1];/* L10: */	    }	}	return 0;    }/*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can *//*     be computed with high relative accuracy (barring over/underflow). *//*     This is a problem on machines without a guard digit in *//*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). *//*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), *//*     which on any of these machines zeros out the bottommost *//*     bit of DSIGMA(I) if it is 1; this makes the subsequent *//*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation *//*     occurs. On binary machines with a guard digit (almost all *//*     machines) it does not change DSIGMA(I) at all. On hexadecimal *//*     and decimal machines with a guard digit, it slightly *//*     changes the bottommost bits of DSIGMA(I). It does not account *//*     for hexadecimal or decimal machines without guard digits *//*     (we know of none). We use a subroutine call to compute *//*     2*DSIGMA(I) to prevent optimizing compilers from eliminating *//*     this code. */    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	dsigma[i__] = _starpu_dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];/* L20: */    }/*     Keep a copy of Z. */    _starpu_dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);/*     Normalize Z. */    rho = _starpu_dnrm2_(k, &z__[1], &c__1);    _starpu_dlascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);    rho *= rho;/*     Find the new singular values. */    i__1 = *k;    for (j = 1; j <= i__1; ++j) {	_starpu_dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j], 		 &vt[j * vt_dim1 + 1], info);/*        If the zero finder fails, the computation is terminated. */	if (*info != 0) {	    return 0;	}/* L30: */    }/*     Compute updated Z. */    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];	i__2 = i__ - 1;	for (j = 1; j <= i__2; ++j) {	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[		    i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);/* L40: */	}	i__2 = *k - 1;	for (j = i__; j <= i__2; ++j) {	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[		    i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);/* L50: */	}	d__2 = sqrt((d__1 = z__[i__], abs(d__1)));	z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]);/* L60: */    }/*     Compute left singular vectors of the modified diagonal matrix, *//*     and store related information for the right singular vectors. */    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * 		vt_dim1 + 1];	u[i__ * u_dim1 + 1] = -1.;	i__2 = *k;	for (j = 2; j <= i__2; ++j) {	    vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ 		    * vt_dim1];	    u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];/* L70: */	}	temp = _starpu_dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1);	q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;	i__2 = *k;	for (j = 2; j <= i__2; ++j) {	    jc = idxc[j];	    q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;/* L80: */	}/* L90: */    }/*     Update the left singular vector matrix. */    if (*k == 2) {	_starpu_dgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset], 		 ldq, &c_b26, &u[u_offset], ldu);	goto L100;    }    if (ctot[1] > 0) {	_starpu_dgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], 		ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);	if (ctot[3] > 0) {	    ktemp = ctot[1] + 2 + ctot[2];	    _starpu_dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], 		    ldu);	}    } else if (ctot[3] > 0) {	ktemp = ctot[1] + 2 + ctot[2];	_starpu_dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], 		ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);    } else {	_starpu_dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);    }    _starpu_dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);    ktemp = ctot[1] + 2;    ctemp = ctot[2] + ctot[3];    _starpu_dgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2, 	     &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);/*     Generate the right singular vectors. */L100:    i__1 = *k;    for (i__ = 1; i__ <= i__1; ++i__) {	temp = _starpu_dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);	q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;	i__2 = *k;	for (j = 2; j <= i__2; ++j) {	    jc = idxc[j];	    q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;/* L110: */	}/* L120: */    }/*     Update the right singular vector matrix. */    if (*k == 2) {	_starpu_dgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset], ldvt2, &c_b26, &vt[vt_offset], ldvt);	return 0;    }    ktemp = ctot[1] + 1;    _starpu_dgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[	    vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);    ktemp = ctot[1] + 2 + ctot[2];    if (ktemp <= *ldvt2) {	_starpu_dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], 		ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], 		ldvt);    }    ktemp = ctot[1] + 1;    nrp1 = *nr + *sqre;    if (ktemp > 1) {	i__1 = *k;	for (i__ = 1; i__ <= i__1; ++i__) {	    q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];/* L130: */	}	i__1 = m;	for (i__ = nlp2; i__ <= i__1; ++i__) {	    vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];/* L140: */	}    }    ctemp = ctot[2] + 1 + ctot[3];    _starpu_dgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &	    vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + 	    1], ldvt);    return 0;/*     End of DLASD3 */} /* _starpu_dlasd3_ */
 |