| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 | 
							- /* dlanv2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b4 = 1.;
 
- /* Subroutine */ int _starpu_dlanv2_(doublereal *a, doublereal *b, doublereal *c__, 
 
- 	doublereal *d__, doublereal *rt1r, doublereal *rt1i, doublereal *rt2r, 
 
- 	 doublereal *rt2i, doublereal *cs, doublereal *sn)
 
- {
 
-     /* System generated locals */
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double d_sign(doublereal *, doublereal *), sqrt(doublereal);
 
-     /* Local variables */
 
-     doublereal p, z__, aa, bb, cc, dd, cs1, sn1, sab, sac, eps, tau, temp, 
 
- 	    scale, bcmax, bcmis, sigma;
 
-     extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric */
 
- /*  matrix in standard form: */
 
- /*       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ] */
 
- /*       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ] */
 
- /*  where either */
 
- /*  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or */
 
- /*  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex */
 
- /*  conjugate eigenvalues. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  A       (input/output) DOUBLE PRECISION */
 
- /*  B       (input/output) DOUBLE PRECISION */
 
- /*  C       (input/output) DOUBLE PRECISION */
 
- /*  D       (input/output) DOUBLE PRECISION */
 
- /*          On entry, the elements of the input matrix. */
 
- /*          On exit, they are overwritten by the elements of the */
 
- /*          standardised Schur form. */
 
- /*  RT1R    (output) DOUBLE PRECISION */
 
- /*  RT1I    (output) DOUBLE PRECISION */
 
- /*  RT2R    (output) DOUBLE PRECISION */
 
- /*  RT2I    (output) DOUBLE PRECISION */
 
- /*          The real and imaginary parts of the eigenvalues. If the */
 
- /*          eigenvalues are a complex conjugate pair, RT1I > 0. */
 
- /*  CS      (output) DOUBLE PRECISION */
 
- /*  SN      (output) DOUBLE PRECISION */
 
- /*          Parameters of the rotation matrix. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Modified by V. Sima, Research Institute for Informatics, Bucharest, */
 
- /*  Romania, to reduce the risk of cancellation errors, */
 
- /*  when computing real eigenvalues, and to ensure, if possible, that */
 
- /*  abs(RT1R) >= abs(RT2R). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     eps = _starpu_dlamch_("P");
 
-     if (*c__ == 0.) {
 
- 	*cs = 1.;
 
- 	*sn = 0.;
 
- 	goto L10;
 
-     } else if (*b == 0.) {
 
- /*        Swap rows and columns */
 
- 	*cs = 0.;
 
- 	*sn = 1.;
 
- 	temp = *d__;
 
- 	*d__ = *a;
 
- 	*a = temp;
 
- 	*b = -(*c__);
 
- 	*c__ = 0.;
 
- 	goto L10;
 
-     } else if (*a - *d__ == 0. && d_sign(&c_b4, b) != d_sign(&c_b4, c__)) {
 
- 	*cs = 1.;
 
- 	*sn = 0.;
 
- 	goto L10;
 
-     } else {
 
- 	temp = *a - *d__;
 
- 	p = temp * .5;
 
- /* Computing MAX */
 
- 	d__1 = abs(*b), d__2 = abs(*c__);
 
- 	bcmax = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	d__1 = abs(*b), d__2 = abs(*c__);
 
- 	bcmis = min(d__1,d__2) * d_sign(&c_b4, b) * d_sign(&c_b4, c__);
 
- /* Computing MAX */
 
- 	d__1 = abs(p);
 
- 	scale = max(d__1,bcmax);
 
- 	z__ = p / scale * p + bcmax / scale * bcmis;
 
- /*        If Z is of the order of the machine accuracy, postpone the */
 
- /*        decision on the nature of eigenvalues */
 
- 	if (z__ >= eps * 4.) {
 
- /*           Real eigenvalues. Compute A and D. */
 
- 	    d__1 = sqrt(scale) * sqrt(z__);
 
- 	    z__ = p + d_sign(&d__1, &p);
 
- 	    *a = *d__ + z__;
 
- 	    *d__ -= bcmax / z__ * bcmis;
 
- /*           Compute B and the rotation matrix */
 
- 	    tau = _starpu_dlapy2_(c__, &z__);
 
- 	    *cs = z__ / tau;
 
- 	    *sn = *c__ / tau;
 
- 	    *b -= *c__;
 
- 	    *c__ = 0.;
 
- 	} else {
 
- /*           Complex eigenvalues, or real (almost) equal eigenvalues. */
 
- /*           Make diagonal elements equal. */
 
- 	    sigma = *b + *c__;
 
- 	    tau = _starpu_dlapy2_(&sigma, &temp);
 
- 	    *cs = sqrt((abs(sigma) / tau + 1.) * .5);
 
- 	    *sn = -(p / (tau * *cs)) * d_sign(&c_b4, &sigma);
 
- /*           Compute [ AA  BB ] = [ A  B ] [ CS -SN ] */
 
- /*                   [ CC  DD ]   [ C  D ] [ SN  CS ] */
 
- 	    aa = *a * *cs + *b * *sn;
 
- 	    bb = -(*a) * *sn + *b * *cs;
 
- 	    cc = *c__ * *cs + *d__ * *sn;
 
- 	    dd = -(*c__) * *sn + *d__ * *cs;
 
- /*           Compute [ A  B ] = [ CS  SN ] [ AA  BB ] */
 
- /*                   [ C  D ]   [-SN  CS ] [ CC  DD ] */
 
- 	    *a = aa * *cs + cc * *sn;
 
- 	    *b = bb * *cs + dd * *sn;
 
- 	    *c__ = -aa * *sn + cc * *cs;
 
- 	    *d__ = -bb * *sn + dd * *cs;
 
- 	    temp = (*a + *d__) * .5;
 
- 	    *a = temp;
 
- 	    *d__ = temp;
 
- 	    if (*c__ != 0.) {
 
- 		if (*b != 0.) {
 
- 		    if (d_sign(&c_b4, b) == d_sign(&c_b4, c__)) {
 
- /*                    Real eigenvalues: reduce to upper triangular form */
 
- 			sab = sqrt((abs(*b)));
 
- 			sac = sqrt((abs(*c__)));
 
- 			d__1 = sab * sac;
 
- 			p = d_sign(&d__1, c__);
 
- 			tau = 1. / sqrt((d__1 = *b + *c__, abs(d__1)));
 
- 			*a = temp + p;
 
- 			*d__ = temp - p;
 
- 			*b -= *c__;
 
- 			*c__ = 0.;
 
- 			cs1 = sab * tau;
 
- 			sn1 = sac * tau;
 
- 			temp = *cs * cs1 - *sn * sn1;
 
- 			*sn = *cs * sn1 + *sn * cs1;
 
- 			*cs = temp;
 
- 		    }
 
- 		} else {
 
- 		    *b = -(*c__);
 
- 		    *c__ = 0.;
 
- 		    temp = *cs;
 
- 		    *cs = -(*sn);
 
- 		    *sn = temp;
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
- L10:
 
- /*     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). */
 
-     *rt1r = *a;
 
-     *rt2r = *d__;
 
-     if (*c__ == 0.) {
 
- 	*rt1i = 0.;
 
- 	*rt2i = 0.;
 
-     } else {
 
- 	*rt1i = sqrt((abs(*b))) * sqrt((abs(*c__)));
 
- 	*rt2i = -(*rt1i);
 
-     }
 
-     return 0;
 
- /*     End of DLANV2 */
 
- } /* _starpu_dlanv2_ */
 
 
  |