| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530 | /* dlalsd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b6 = 0.;static integer c__0 = 0;static doublereal c_b11 = 1.;/* Subroutine */ int _starpu_dlalsd_(char *uplo, integer *smlsiz, integer *n, integer 	*nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb, 	doublereal *rcond, integer *rank, doublereal *work, integer *iwork, 	integer *info){    /* System generated locals */    integer b_dim1, b_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double log(doublereal), d_sign(doublereal *, doublereal *);    /* Local variables */    integer c__, i__, j, k;    doublereal r__;    integer s, u, z__;    doublereal cs;    integer bx;    doublereal sn;    integer st, vt, nm1, st1;    doublereal eps;    integer iwk;    doublereal tol;    integer difl, difr;    doublereal rcnd;    integer perm, nsub;    extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer nlvl, sqre, bxst;    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *),	     _starpu_dcopy_(integer *, doublereal *, integer *, doublereal *, integer 	    *);    integer poles, sizei, nsize, nwork, icmpq1, icmpq2;    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_dlasda_(integer *, integer *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     doublereal *, integer *, integer *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     integer *), _starpu_dlalsa_(integer *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *, integer *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dlasdq_(char *, integer *, integer *, integer 	    *, integer *, integer *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dlacpy_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *), _starpu_dlartg_(doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *), _starpu_dlaset_(char *, integer *, integer *, 	     doublereal *, doublereal *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    integer givcol;    extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);    extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *, 	    integer *);    doublereal orgnrm;    integer givnum, givptr, smlszp;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLALSD uses the singular value decomposition of A to solve the least *//*  squares problem of finding X to minimize the Euclidean norm of each *//*  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B *//*  are N-by-NRHS. The solution X overwrites B. *//*  The singular values of A smaller than RCOND times the largest *//*  singular value are treated as zero in solving the least squares *//*  problem; in this case a minimum norm solution is returned. *//*  The actual singular values are returned in D in ascending order. *//*  This code makes very mild assumptions about floating point *//*  arithmetic. It will work on machines with a guard digit in *//*  add/subtract, or on those binary machines without guard digits *//*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. *//*  It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none. *//*  Arguments *//*  ========= *//*  UPLO   (input) CHARACTER*1 *//*         = 'U': D and E define an upper bidiagonal matrix. *//*         = 'L': D and E define a  lower bidiagonal matrix. *//*  SMLSIZ (input) INTEGER *//*         The maximum size of the subproblems at the bottom of the *//*         computation tree. *//*  N      (input) INTEGER *//*         The dimension of the  bidiagonal matrix.  N >= 0. *//*  NRHS   (input) INTEGER *//*         The number of columns of B. NRHS must be at least 1. *//*  D      (input/output) DOUBLE PRECISION array, dimension (N) *//*         On entry D contains the main diagonal of the bidiagonal *//*         matrix. On exit, if INFO = 0, D contains its singular values. *//*  E      (input/output) DOUBLE PRECISION array, dimension (N-1) *//*         Contains the super-diagonal entries of the bidiagonal matrix. *//*         On exit, E has been destroyed. *//*  B      (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*         On input, B contains the right hand sides of the least *//*         squares problem. On output, B contains the solution X. *//*  LDB    (input) INTEGER *//*         The leading dimension of B in the calling subprogram. *//*         LDB must be at least max(1,N). *//*  RCOND  (input) DOUBLE PRECISION *//*         The singular values of A less than or equal to RCOND times *//*         the largest singular value are treated as zero in solving *//*         the least squares problem. If RCOND is negative, *//*         machine precision is used instead. *//*         For example, if diag(S)*X=B were the least squares problem, *//*         where diag(S) is a diagonal matrix of singular values, the *//*         solution would be X(i) = B(i) / S(i) if S(i) is greater than *//*         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to *//*         RCOND*max(S). *//*  RANK   (output) INTEGER *//*         The number of singular values of A greater than RCOND times *//*         the largest singular value. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension at least *//*         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), *//*         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). *//*  IWORK  (workspace) INTEGER array, dimension at least *//*         (3*N*NLVL + 11*N) *//*  INFO   (output) INTEGER *//*         = 0:  successful exit. *//*         < 0:  if INFO = -i, the i-th argument had an illegal value. *//*         > 0:  The algorithm failed to compute an singular value while *//*               working on the submatrix lying in rows and columns *//*               INFO/(N+1) through MOD(INFO,N+1). *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Ren-Cang Li, Computer Science Division, University of *//*       California at Berkeley, USA *//*     Osni Marques, LBNL/NERSC, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --work;    --iwork;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -3;    } else if (*nrhs < 1) {	*info = -4;    } else if (*ldb < 1 || *ldb < *n) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLALSD", &i__1);	return 0;    }    eps = _starpu_dlamch_("Epsilon");/*     Set up the tolerance. */    if (*rcond <= 0. || *rcond >= 1.) {	rcnd = eps;    } else {	rcnd = *rcond;    }    *rank = 0;/*     Quick return if possible. */    if (*n == 0) {	return 0;    } else if (*n == 1) {	if (d__[1] == 0.) {	    _starpu_dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);	} else {	    *rank = 1;	    _starpu_dlascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[		    b_offset], ldb, info);	    d__[1] = abs(d__[1]);	}	return 0;    }/*     Rotate the matrix if it is lower bidiagonal. */    if (*(unsigned char *)uplo == 'L') {	i__1 = *n - 1;	for (i__ = 1; i__ <= i__1; ++i__) {	    _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);	    d__[i__] = r__;	    e[i__] = sn * d__[i__ + 1];	    d__[i__ + 1] = cs * d__[i__ + 1];	    if (*nrhs == 1) {		_starpu_drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &			c__1, &cs, &sn);	    } else {		work[(i__ << 1) - 1] = cs;		work[i__ * 2] = sn;	    }/* L10: */	}	if (*nrhs > 1) {	    i__1 = *nrhs;	    for (i__ = 1; i__ <= i__1; ++i__) {		i__2 = *n - 1;		for (j = 1; j <= i__2; ++j) {		    cs = work[(j << 1) - 1];		    sn = work[j * 2];		    _starpu_drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *			     b_dim1], &c__1, &cs, &sn);/* L20: */		}/* L30: */	    }	}    }/*     Scale. */    nm1 = *n - 1;    orgnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);    if (orgnrm == 0.) {	_starpu_dlaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);	return 0;    }    _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);    _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1, 	    info);/*     If N is smaller than the minimum divide size SMLSIZ, then solve *//*     the problem with another solver. */    if (*n <= *smlsiz) {	nwork = *n * *n + 1;	_starpu_dlaset_("A", n, n, &c_b6, &c_b11, &work[1], n);	_starpu_dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &		work[1], n, &b[b_offset], ldb, &work[nwork], info);	if (*info != 0) {	    return 0;	}	tol = rcnd * (d__1 = d__[_starpu_idamax_(n, &d__[1], &c__1)], abs(d__1));	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (d__[i__] <= tol) {		_starpu_dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);	    } else {		_starpu_dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[			i__ + b_dim1], ldb, info);		++(*rank);	    }/* L40: */	}	_starpu_dgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &		c_b6, &work[nwork], n);	_starpu_dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);/*        Unscale. */	_starpu_dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, 		info);	_starpu_dlasrt_("D", n, &d__[1], info);	_starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], 		ldb, info);	return 0;    }/*     Book-keeping and setting up some constants. */    nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) / 	    log(2.)) + 1;    smlszp = *smlsiz + 1;    u = 1;    vt = *smlsiz * *n + 1;    difl = vt + smlszp * *n;    difr = difl + nlvl * *n;    z__ = difr + (nlvl * *n << 1);    c__ = z__ + nlvl * *n;    s = c__ + *n;    poles = s + *n;    givnum = poles + (nlvl << 1) * *n;    bx = givnum + (nlvl << 1) * *n;    nwork = bx + *n * *nrhs;    sizei = *n + 1;    k = sizei + *n;    givptr = k + *n;    perm = givptr + *n;    givcol = perm + nlvl * *n;    iwk = givcol + (nlvl * *n << 1);    st = 1;    sqre = 0;    icmpq1 = 1;    icmpq2 = 0;    nsub = 0;    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	if ((d__1 = d__[i__], abs(d__1)) < eps) {	    d__[i__] = d_sign(&eps, &d__[i__]);	}/* L50: */    }    i__1 = nm1;    for (i__ = 1; i__ <= i__1; ++i__) {	if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {	    ++nsub;	    iwork[nsub] = st;/*           Subproblem found. First determine its size and then *//*           apply divide and conquer on it. */	    if (i__ < nm1) {/*              A subproblem with E(I) small for I < NM1. */		nsize = i__ - st + 1;		iwork[sizei + nsub - 1] = nsize;	    } else if ((d__1 = e[i__], abs(d__1)) >= eps) {/*              A subproblem with E(NM1) not too small but I = NM1. */		nsize = *n - st + 1;		iwork[sizei + nsub - 1] = nsize;	    } else {/*              A subproblem with E(NM1) small. This implies an *//*              1-by-1 subproblem at D(N), which is not solved *//*              explicitly. */		nsize = i__ - st + 1;		iwork[sizei + nsub - 1] = nsize;		++nsub;		iwork[nsub] = *n;		iwork[sizei + nsub - 1] = 1;		_starpu_dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);	    }	    st1 = st - 1;	    if (nsize == 1) {/*              This is a 1-by-1 subproblem and is not solved *//*              explicitly. */		_starpu_dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);	    } else if (nsize <= *smlsiz) {/*              This is a small subproblem and is solved by DLASDQ. */		_starpu_dlaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1], 			n);		_starpu_dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[			st], &work[vt + st1], n, &work[nwork], n, &b[st + 			b_dim1], ldb, &work[nwork], info);		if (*info != 0) {		    return 0;		}		_starpu_dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx + 			st1], n);	    } else {/*              A large problem. Solve it using divide and conquer. */		_starpu_dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &			work[u + st1], n, &work[vt + st1], &iwork[k + st1], &			work[difl + st1], &work[difr + st1], &work[z__ + st1], 			 &work[poles + st1], &iwork[givptr + st1], &iwork[			givcol + st1], n, &iwork[perm + st1], &work[givnum + 			st1], &work[c__ + st1], &work[s + st1], &work[nwork], 			&iwork[iwk], info);		if (*info != 0) {		    return 0;		}		bxst = bx + st1;		_starpu_dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &			work[bxst], n, &work[u + st1], n, &work[vt + st1], &			iwork[k + st1], &work[difl + st1], &work[difr + st1], 			&work[z__ + st1], &work[poles + st1], &iwork[givptr + 			st1], &iwork[givcol + st1], n, &iwork[perm + st1], &			work[givnum + st1], &work[c__ + st1], &work[s + st1], 			&work[nwork], &iwork[iwk], info);		if (*info != 0) {		    return 0;		}	    }	    st = i__ + 1;	}/* L60: */    }/*     Apply the singular values and treat the tiny ones as zero. */    tol = rcnd * (d__1 = d__[_starpu_idamax_(n, &d__[1], &c__1)], abs(d__1));    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {/*        Some of the elements in D can be negative because 1-by-1 *//*        subproblems were not solved explicitly. */	if ((d__1 = d__[i__], abs(d__1)) <= tol) {	    _starpu_dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);	} else {	    ++(*rank);	    _starpu_dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[		    bx + i__ - 1], n, info);	}	d__[i__] = (d__1 = d__[i__], abs(d__1));/* L70: */    }/*     Now apply back the right singular vectors. */    icmpq2 = 1;    i__1 = nsub;    for (i__ = 1; i__ <= i__1; ++i__) {	st = iwork[i__];	st1 = st - 1;	nsize = iwork[sizei + i__ - 1];	bxst = bx + st1;	if (nsize == 1) {	    _starpu_dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);	} else if (nsize <= *smlsiz) {	    _starpu_dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n, 		     &work[bxst], n, &c_b6, &b[st + b_dim1], ldb);	} else {	    _starpu_dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st + 		    b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[		    k + st1], &work[difl + st1], &work[difr + st1], &work[z__ 		    + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[		    givcol + st1], n, &iwork[perm + st1], &work[givnum + st1], 		     &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[		    iwk], info);	    if (*info != 0) {		return 0;	    }	}/* L80: */    }/*     Unscale and sort the singular values. */    _starpu_dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);    _starpu_dlasrt_("D", n, &d__[1], info);    _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb, 	    info);    return 0;/*     End of DLALSD */} /* _starpu_dlalsd_ */
 |