| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 | /* dlals0.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b5 = -1.;static integer c__1 = 1;static doublereal c_b11 = 1.;static doublereal c_b13 = 0.;static integer c__0 = 0;/* Subroutine */ int _starpu_dlals0_(integer *icompq, integer *nl, integer *nr, 	integer *sqre, integer *nrhs, doublereal *b, integer *ldb, doublereal 	*bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol, 	integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *	poles, doublereal *difl, doublereal *difr, doublereal *z__, integer *	k, doublereal *c__, doublereal *s, doublereal *work, integer *info){    /* System generated locals */    integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset, 	    difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, 	    poles_offset, i__1, i__2;    doublereal d__1;    /* Local variables */    integer i__, j, m, n;    doublereal dj;    integer nlp1;    doublereal temp;    extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal diflj, difrj, dsigj;    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *);    extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);    extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), _starpu_dlacpy_(char *, integer *, integer 	    *, doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    doublereal dsigjp;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLALS0 applies back the multiplying factors of either the left or the *//*  right singular vector matrix of a diagonal matrix appended by a row *//*  to the right hand side matrix B in solving the least squares problem *//*  using the divide-and-conquer SVD approach. *//*  For the left singular vector matrix, three types of orthogonal *//*  matrices are involved: *//*  (1L) Givens rotations: the number of such rotations is GIVPTR; the *//*       pairs of columns/rows they were applied to are stored in GIVCOL; *//*       and the C- and S-values of these rotations are stored in GIVNUM. *//*  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first *//*       row, and for J=2:N, PERM(J)-th row of B is to be moved to the *//*       J-th row. *//*  (3L) The left singular vector matrix of the remaining matrix. *//*  For the right singular vector matrix, four types of orthogonal *//*  matrices are involved: *//*  (1R) The right singular vector matrix of the remaining matrix. *//*  (2R) If SQRE = 1, one extra Givens rotation to generate the right *//*       null space. *//*  (3R) The inverse transformation of (2L). *//*  (4R) The inverse transformation of (1L). *//*  Arguments *//*  ========= *//*  ICOMPQ (input) INTEGER *//*         Specifies whether singular vectors are to be computed in *//*         factored form: *//*         = 0: Left singular vector matrix. *//*         = 1: Right singular vector matrix. *//*  NL     (input) INTEGER *//*         The row dimension of the upper block. NL >= 1. *//*  NR     (input) INTEGER *//*         The row dimension of the lower block. NR >= 1. *//*  SQRE   (input) INTEGER *//*         = 0: the lower block is an NR-by-NR square matrix. *//*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *//*         The bidiagonal matrix has row dimension N = NL + NR + 1, *//*         and column dimension M = N + SQRE. *//*  NRHS   (input) INTEGER *//*         The number of columns of B and BX. NRHS must be at least 1. *//*  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) *//*         On input, B contains the right hand sides of the least *//*         squares problem in rows 1 through M. On output, B contains *//*         the solution X in rows 1 through N. *//*  LDB    (input) INTEGER *//*         The leading dimension of B. LDB must be at least *//*         max(1,MAX( M, N ) ). *//*  BX     (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) *//*  LDBX   (input) INTEGER *//*         The leading dimension of BX. *//*  PERM   (input) INTEGER array, dimension ( N ) *//*         The permutations (from deflation and sorting) applied *//*         to the two blocks. *//*  GIVPTR (input) INTEGER *//*         The number of Givens rotations which took place in this *//*         subproblem. *//*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) *//*         Each pair of numbers indicates a pair of rows/columns *//*         involved in a Givens rotation. *//*  LDGCOL (input) INTEGER *//*         The leading dimension of GIVCOL, must be at least N. *//*  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) *//*         Each number indicates the C or S value used in the *//*         corresponding Givens rotation. *//*  LDGNUM (input) INTEGER *//*         The leading dimension of arrays DIFR, POLES and *//*         GIVNUM, must be at least K. *//*  POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) *//*         On entry, POLES(1:K, 1) contains the new singular *//*         values obtained from solving the secular equation, and *//*         POLES(1:K, 2) is an array containing the poles in the secular *//*         equation. *//*  DIFL   (input) DOUBLE PRECISION array, dimension ( K ). *//*         On entry, DIFL(I) is the distance between I-th updated *//*         (undeflated) singular value and the I-th (undeflated) old *//*         singular value. *//*  DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). *//*         On entry, DIFR(I, 1) contains the distances between I-th *//*         updated (undeflated) singular value and the I+1-th *//*         (undeflated) old singular value. And DIFR(I, 2) is the *//*         normalizing factor for the I-th right singular vector. *//*  Z      (input) DOUBLE PRECISION array, dimension ( K ) *//*         Contain the components of the deflation-adjusted updating row *//*         vector. *//*  K      (input) INTEGER *//*         Contains the dimension of the non-deflated matrix, *//*         This is the order of the related secular equation. 1 <= K <=N. *//*  C      (input) DOUBLE PRECISION *//*         C contains garbage if SQRE =0 and the C-value of a Givens *//*         rotation related to the right null space if SQRE = 1. *//*  S      (input) DOUBLE PRECISION *//*         S contains garbage if SQRE =0 and the S-value of a Givens *//*         rotation related to the right null space if SQRE = 1. *//*  WORK   (workspace) DOUBLE PRECISION array, dimension ( K ) *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Ren-Cang Li, Computer Science Division, University of *//*       California at Berkeley, USA *//*     Osni Marques, LBNL/NERSC, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    bx_dim1 = *ldbx;    bx_offset = 1 + bx_dim1;    bx -= bx_offset;    --perm;    givcol_dim1 = *ldgcol;    givcol_offset = 1 + givcol_dim1;    givcol -= givcol_offset;    difr_dim1 = *ldgnum;    difr_offset = 1 + difr_dim1;    difr -= difr_offset;    poles_dim1 = *ldgnum;    poles_offset = 1 + poles_dim1;    poles -= poles_offset;    givnum_dim1 = *ldgnum;    givnum_offset = 1 + givnum_dim1;    givnum -= givnum_offset;    --difl;    --z__;    --work;    /* Function Body */    *info = 0;    if (*icompq < 0 || *icompq > 1) {	*info = -1;    } else if (*nl < 1) {	*info = -2;    } else if (*nr < 1) {	*info = -3;    } else if (*sqre < 0 || *sqre > 1) {	*info = -4;    }    n = *nl + *nr + 1;    if (*nrhs < 1) {	*info = -5;    } else if (*ldb < n) {	*info = -7;    } else if (*ldbx < n) {	*info = -9;    } else if (*givptr < 0) {	*info = -11;    } else if (*ldgcol < n) {	*info = -13;    } else if (*ldgnum < n) {	*info = -15;    } else if (*k < 1) {	*info = -20;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLALS0", &i__1);	return 0;    }    m = n + *sqre;    nlp1 = *nl + 1;    if (*icompq == 0) {/*        Apply back orthogonal transformations from the left. *//*        Step (1L): apply back the Givens rotations performed. */	i__1 = *givptr;	for (i__ = 1; i__ <= i__1; ++i__) {	    _starpu_drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &		    b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + 		    (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);/* L10: */	}/*        Step (2L): permute rows of B. */	_starpu_dcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);	i__1 = n;	for (i__ = 2; i__ <= i__1; ++i__) {	    _starpu_dcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1], 		    ldbx);/* L20: */	}/*        Step (3L): apply the inverse of the left singular vector *//*        matrix to BX. */	if (*k == 1) {	    _starpu_dcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);	    if (z__[1] < 0.) {		_starpu_dscal_(nrhs, &c_b5, &b[b_offset], ldb);	    }	} else {	    i__1 = *k;	    for (j = 1; j <= i__1; ++j) {		diflj = difl[j];		dj = poles[j + poles_dim1];		dsigj = -poles[j + (poles_dim1 << 1)];		if (j < *k) {		    difrj = -difr[j + difr_dim1];		    dsigjp = -poles[j + 1 + (poles_dim1 << 1)];		}		if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) {		    work[j] = 0.;		} else {		    work[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj /			     (poles[j + (poles_dim1 << 1)] + dj);		}		i__2 = j - 1;		for (i__ = 1; i__ <= i__2; ++i__) {		    if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == 			    0.) {			work[i__] = 0.;		    } else {			work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] 				/ (_starpu_dlamc3_(&poles[i__ + (poles_dim1 << 1)], &				dsigj) - diflj) / (poles[i__ + (poles_dim1 << 				1)] + dj);		    }/* L30: */		}		i__2 = *k;		for (i__ = j + 1; i__ <= i__2; ++i__) {		    if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == 			    0.) {			work[i__] = 0.;		    } else {			work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] 				/ (_starpu_dlamc3_(&poles[i__ + (poles_dim1 << 1)], &				dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<				 1)] + dj);		    }/* L40: */		}		work[1] = -1.;		temp = _starpu_dnrm2_(k, &work[1], &c__1);		_starpu_dgemv_("T", k, nrhs, &c_b11, &bx[bx_offset], ldbx, &work[1], &			c__1, &c_b13, &b[j + b_dim1], ldb);		_starpu_dlascl_("G", &c__0, &c__0, &temp, &c_b11, &c__1, nrhs, &b[j + 			b_dim1], ldb, info);/* L50: */	    }	}/*        Move the deflated rows of BX to B also. */	if (*k < max(m,n)) {	    i__1 = n - *k;	    _starpu_dlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1 		    + b_dim1], ldb);	}    } else {/*        Apply back the right orthogonal transformations. *//*        Step (1R): apply back the new right singular vector matrix *//*        to B. */	if (*k == 1) {	    _starpu_dcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);	} else {	    i__1 = *k;	    for (j = 1; j <= i__1; ++j) {		dsigj = poles[j + (poles_dim1 << 1)];		if (z__[j] == 0.) {		    work[j] = 0.;		} else {		    work[j] = -z__[j] / difl[j] / (dsigj + poles[j + 			    poles_dim1]) / difr[j + (difr_dim1 << 1)];		}		i__2 = j - 1;		for (i__ = 1; i__ <= i__2; ++i__) {		    if (z__[j] == 0.) {			work[i__] = 0.;		    } else {			d__1 = -poles[i__ + 1 + (poles_dim1 << 1)];			work[i__] = z__[j] / (_starpu_dlamc3_(&dsigj, &d__1) - difr[				i__ + difr_dim1]) / (dsigj + poles[i__ + 				poles_dim1]) / difr[i__ + (difr_dim1 << 1)];		    }/* L60: */		}		i__2 = *k;		for (i__ = j + 1; i__ <= i__2; ++i__) {		    if (z__[j] == 0.) {			work[i__] = 0.;		    } else {			d__1 = -poles[i__ + (poles_dim1 << 1)];			work[i__] = z__[j] / (_starpu_dlamc3_(&dsigj, &d__1) - difl[				i__]) / (dsigj + poles[i__ + poles_dim1]) / 				difr[i__ + (difr_dim1 << 1)];		    }/* L70: */		}		_starpu_dgemv_("T", k, nrhs, &c_b11, &b[b_offset], ldb, &work[1], &			c__1, &c_b13, &bx[j + bx_dim1], ldbx);/* L80: */	    }	}/*        Step (2R): if SQRE = 1, apply back the rotation that is *//*        related to the right null space of the subproblem. */	if (*sqre == 1) {	    _starpu_dcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);	    _starpu_drot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__, 		    s);	}	if (*k < max(m,n)) {	    i__1 = n - *k;	    _starpu_dlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 + 		    bx_dim1], ldbx);	}/*        Step (3R): permute rows of B. */	_starpu_dcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);	if (*sqre == 1) {	    _starpu_dcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);	}	i__1 = n;	for (i__ = 2; i__ <= i__1; ++i__) {	    _starpu_dcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1], 		    ldb);/* L90: */	}/*        Step (4R): apply back the Givens rotations performed. */	for (i__ = *givptr; i__ >= 1; --i__) {	    d__1 = -givnum[i__ + givnum_dim1];	    _starpu_drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &		    b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + 		    (givnum_dim1 << 1)], &d__1);/* L100: */	}    }    return 0;/*     End of DLALS0 */} /* _starpu_dlals0_ */
 |