| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 | /* dhsein.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static logical c_false = FALSE_;static logical c_true = TRUE_;/* Subroutine */ int _starpu_dhsein_(char *side, char *eigsrc, char *initv, logical *	select, integer *n, doublereal *h__, integer *ldh, doublereal *wr, 	doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, 	integer *ldvr, integer *mm, integer *m, doublereal *work, integer *	ifaill, integer *ifailr, integer *info){    /* System generated locals */    integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 	    i__2;    doublereal d__1, d__2;    /* Local variables */    integer i__, k, kl, kr, kln, ksi;    doublereal wki;    integer ksr;    doublereal ulp, wkr, eps3;    logical pair;    doublereal unfl;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    logical leftv, bothv;    doublereal hnorm;    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_dlaein_(logical *, logical *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     doublereal *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *);    extern doublereal _starpu_dlanhs_(char *, integer *, doublereal *, integer *, 	    doublereal *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    logical noinit;    integer ldwork;    logical rightv, fromqr;    doublereal smlnum;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DHSEIN uses inverse iteration to find specified right and/or left *//*  eigenvectors of a real upper Hessenberg matrix H. *//*  The right eigenvector x and the left eigenvector y of the matrix H *//*  corresponding to an eigenvalue w are defined by: *//*               H * x = w * x,     y**h * H = w * y**h *//*  where y**h denotes the conjugate transpose of the vector y. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'R': compute right eigenvectors only; *//*          = 'L': compute left eigenvectors only; *//*          = 'B': compute both right and left eigenvectors. *//*  EIGSRC  (input) CHARACTER*1 *//*          Specifies the source of eigenvalues supplied in (WR,WI): *//*          = 'Q': the eigenvalues were found using DHSEQR; thus, if *//*                 H has zero subdiagonal elements, and so is *//*                 block-triangular, then the j-th eigenvalue can be *//*                 assumed to be an eigenvalue of the block containing *//*                 the j-th row/column.  This property allows DHSEIN to *//*                 perform inverse iteration on just one diagonal block. *//*          = 'N': no assumptions are made on the correspondence *//*                 between eigenvalues and diagonal blocks.  In this *//*                 case, DHSEIN must always perform inverse iteration *//*                 using the whole matrix H. *//*  INITV   (input) CHARACTER*1 *//*          = 'N': no initial vectors are supplied; *//*          = 'U': user-supplied initial vectors are stored in the arrays *//*                 VL and/or VR. *//*  SELECT  (input/output) LOGICAL array, dimension (N) *//*          Specifies the eigenvectors to be computed. To select the *//*          real eigenvector corresponding to a real eigenvalue WR(j), *//*          SELECT(j) must be set to .TRUE.. To select the complex *//*          eigenvector corresponding to a complex eigenvalue *//*          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), *//*          either SELECT(j) or SELECT(j+1) or both must be set to *//*          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is *//*          .FALSE.. *//*  N       (input) INTEGER *//*          The order of the matrix H.  N >= 0. *//*  H       (input) DOUBLE PRECISION array, dimension (LDH,N) *//*          The upper Hessenberg matrix H. *//*  LDH     (input) INTEGER *//*          The leading dimension of the array H.  LDH >= max(1,N). *//*  WR      (input/output) DOUBLE PRECISION array, dimension (N) *//*  WI      (input) DOUBLE PRECISION array, dimension (N) *//*          On entry, the real and imaginary parts of the eigenvalues of *//*          H; a complex conjugate pair of eigenvalues must be stored in *//*          consecutive elements of WR and WI. *//*          On exit, WR may have been altered since close eigenvalues *//*          are perturbed slightly in searching for independent *//*          eigenvectors. *//*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) *//*          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must *//*          contain starting vectors for the inverse iteration for the *//*          left eigenvectors; the starting vector for each eigenvector *//*          must be in the same column(s) in which the eigenvector will *//*          be stored. *//*          On exit, if SIDE = 'L' or 'B', the left eigenvectors *//*          specified by SELECT will be stored consecutively in the *//*          columns of VL, in the same order as their eigenvalues. A *//*          complex eigenvector corresponding to a complex eigenvalue is *//*          stored in two consecutive columns, the first holding the real *//*          part and the second the imaginary part. *//*          If SIDE = 'R', VL is not referenced. *//*  LDVL    (input) INTEGER *//*          The leading dimension of the array VL. *//*          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. *//*  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) *//*          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must *//*          contain starting vectors for the inverse iteration for the *//*          right eigenvectors; the starting vector for each eigenvector *//*          must be in the same column(s) in which the eigenvector will *//*          be stored. *//*          On exit, if SIDE = 'R' or 'B', the right eigenvectors *//*          specified by SELECT will be stored consecutively in the *//*          columns of VR, in the same order as their eigenvalues. A *//*          complex eigenvector corresponding to a complex eigenvalue is *//*          stored in two consecutive columns, the first holding the real *//*          part and the second the imaginary part. *//*          If SIDE = 'L', VR is not referenced. *//*  LDVR    (input) INTEGER *//*          The leading dimension of the array VR. *//*          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. *//*  MM      (input) INTEGER *//*          The number of columns in the arrays VL and/or VR. MM >= M. *//*  M       (output) INTEGER *//*          The number of columns in the arrays VL and/or VR required to *//*          store the eigenvectors; each selected real eigenvector *//*          occupies one column and each selected complex eigenvector *//*          occupies two columns. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension ((N+2)*N) *//*  IFAILL  (output) INTEGER array, dimension (MM) *//*          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left *//*          eigenvector in the i-th column of VL (corresponding to the *//*          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the *//*          eigenvector converged satisfactorily. If the i-th and (i+1)th *//*          columns of VL hold a complex eigenvector, then IFAILL(i) and *//*          IFAILL(i+1) are set to the same value. *//*          If SIDE = 'R', IFAILL is not referenced. *//*  IFAILR  (output) INTEGER array, dimension (MM) *//*          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right *//*          eigenvector in the i-th column of VR (corresponding to the *//*          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the *//*          eigenvector converged satisfactorily. If the i-th and (i+1)th *//*          columns of VR hold a complex eigenvector, then IFAILR(i) and *//*          IFAILR(i+1) are set to the same value. *//*          If SIDE = 'L', IFAILR is not referenced. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, i is the number of eigenvectors which *//*                failed to converge; see IFAILL and IFAILR for further *//*                details. *//*  Further Details *//*  =============== *//*  Each eigenvector is normalized so that the element of largest *//*  magnitude has magnitude 1; here the magnitude of a complex number *//*  (x,y) is taken to be |x|+|y|. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test the input parameters. */    /* Parameter adjustments */    --select;    h_dim1 = *ldh;    h_offset = 1 + h_dim1;    h__ -= h_offset;    --wr;    --wi;    vl_dim1 = *ldvl;    vl_offset = 1 + vl_dim1;    vl -= vl_offset;    vr_dim1 = *ldvr;    vr_offset = 1 + vr_dim1;    vr -= vr_offset;    --work;    --ifaill;    --ifailr;    /* Function Body */    bothv = _starpu_lsame_(side, "B");    rightv = _starpu_lsame_(side, "R") || bothv;    leftv = _starpu_lsame_(side, "L") || bothv;    fromqr = _starpu_lsame_(eigsrc, "Q");    noinit = _starpu_lsame_(initv, "N");/*     Set M to the number of columns required to store the selected *//*     eigenvectors, and standardize the array SELECT. */    *m = 0;    pair = FALSE_;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {	if (pair) {	    pair = FALSE_;	    select[k] = FALSE_;	} else {	    if (wi[k] == 0.) {		if (select[k]) {		    ++(*m);		}	    } else {		pair = TRUE_;		if (select[k] || select[k + 1]) {		    select[k] = TRUE_;		    *m += 2;		}	    }	}/* L10: */    }    *info = 0;    if (! rightv && ! leftv) {	*info = -1;    } else if (! fromqr && ! _starpu_lsame_(eigsrc, "N")) {	*info = -2;    } else if (! noinit && ! _starpu_lsame_(initv, "U")) {	*info = -3;    } else if (*n < 0) {	*info = -5;    } else if (*ldh < max(1,*n)) {	*info = -7;    } else if (*ldvl < 1 || leftv && *ldvl < *n) {	*info = -11;    } else if (*ldvr < 1 || rightv && *ldvr < *n) {	*info = -13;    } else if (*mm < *m) {	*info = -14;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DHSEIN", &i__1);	return 0;    }/*     Quick return if possible. */    if (*n == 0) {	return 0;    }/*     Set machine-dependent constants. */    unfl = _starpu_dlamch_("Safe minimum");    ulp = _starpu_dlamch_("Precision");    smlnum = unfl * (*n / ulp);    bignum = (1. - ulp) / smlnum;    ldwork = *n + 1;    kl = 1;    kln = 0;    if (fromqr) {	kr = 0;    } else {	kr = *n;    }    ksr = 1;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {	if (select[k]) {/*           Compute eigenvector(s) corresponding to W(K). */	    if (fromqr) {/*              If affiliation of eigenvalues is known, check whether *//*              the matrix splits. *//*              Determine KL and KR such that 1 <= KL <= K <= KR <= N *//*              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or *//*              KR = N). *//*              Then inverse iteration can be performed with the *//*              submatrix H(KL:N,KL:N) for a left eigenvector, and with *//*              the submatrix H(1:KR,1:KR) for a right eigenvector. */		i__2 = kl + 1;		for (i__ = k; i__ >= i__2; --i__) {		    if (h__[i__ + (i__ - 1) * h_dim1] == 0.) {			goto L30;		    }/* L20: */		}L30:		kl = i__;		if (k > kr) {		    i__2 = *n - 1;		    for (i__ = k; i__ <= i__2; ++i__) {			if (h__[i__ + 1 + i__ * h_dim1] == 0.) {			    goto L50;			}/* L40: */		    }L50:		    kr = i__;		}	    }	    if (kl != kln) {		kln = kl;/*              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it *//*              has not ben computed before. */		i__2 = kr - kl + 1;		hnorm = _starpu_dlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &			work[1]);		if (hnorm > 0.) {		    eps3 = hnorm * ulp;		} else {		    eps3 = smlnum;		}	    }/*           Perturb eigenvalue if it is close to any previous *//*           selected eigenvalues affiliated to the submatrix *//*           H(KL:KR,KL:KR). Close roots are modified by EPS3. */	    wkr = wr[k];	    wki = wi[k];L60:	    i__2 = kl;	    for (i__ = k - 1; i__ >= i__2; --i__) {		if (select[i__] && (d__1 = wr[i__] - wkr, abs(d__1)) + (d__2 =			 wi[i__] - wki, abs(d__2)) < eps3) {		    wkr += eps3;		    goto L60;		}/* L70: */	    }	    wr[k] = wkr;	    pair = wki != 0.;	    if (pair) {		ksi = ksr + 1;	    } else {		ksi = ksr;	    }	    if (leftv) {/*              Compute left eigenvector. */		i__2 = *n - kl + 1;		_starpu_dlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh, 			 &wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi * 			vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1], 			&eps3, &smlnum, &bignum, &iinfo);		if (iinfo > 0) {		    if (pair) {			*info += 2;		    } else {			++(*info);		    }		    ifaill[ksr] = k;		    ifaill[ksi] = k;		} else {		    ifaill[ksr] = 0;		    ifaill[ksi] = 0;		}		i__2 = kl - 1;		for (i__ = 1; i__ <= i__2; ++i__) {		    vl[i__ + ksr * vl_dim1] = 0.;/* L80: */		}		if (pair) {		    i__2 = kl - 1;		    for (i__ = 1; i__ <= i__2; ++i__) {			vl[i__ + ksi * vl_dim1] = 0.;/* L90: */		    }		}	    }	    if (rightv) {/*              Compute right eigenvector. */		_starpu_dlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, &			wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], &			work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &			smlnum, &bignum, &iinfo);		if (iinfo > 0) {		    if (pair) {			*info += 2;		    } else {			++(*info);		    }		    ifailr[ksr] = k;		    ifailr[ksi] = k;		} else {		    ifailr[ksr] = 0;		    ifailr[ksi] = 0;		}		i__2 = *n;		for (i__ = kr + 1; i__ <= i__2; ++i__) {		    vr[i__ + ksr * vr_dim1] = 0.;/* L100: */		}		if (pair) {		    i__2 = *n;		    for (i__ = kr + 1; i__ <= i__2; ++i__) {			vr[i__ + ksi * vr_dim1] = 0.;/* L110: */		    }		}	    }	    if (pair) {		ksr += 2;	    } else {		++ksr;	    }	}/* L120: */    }    return 0;/*     End of DHSEIN */} /* _starpu_dhsein_ */
 |