| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 | 
							- /* dggqrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- /* Subroutine */ int _starpu_dggqrf_(integer *n, integer *m, integer *p, doublereal *
 
- 	a, integer *lda, doublereal *taua, doublereal *b, integer *ldb, 
 
- 	doublereal *taub, doublereal *work, integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
 
-     /* Local variables */
 
-     integer nb, nb1, nb2, nb3, lopt;
 
-     extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dgerqf_(integer *, integer *, doublereal *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *), _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *);
 
-     integer lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGQRF computes a generalized QR factorization of an N-by-M matrix A */
 
- /*  and an N-by-P matrix B: */
 
- /*              A = Q*R,        B = Q*T*Z, */
 
- /*  where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal */
 
- /*  matrix, and R and T assume one of the forms: */
 
- /*  if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N, */
 
- /*                  (  0  ) N-M                         N   M-N */
 
- /*                     M */
 
- /*  where R11 is upper triangular, and */
 
- /*  if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P, */
 
- /*                   P-N  N                           ( T21 ) P */
 
- /*                                                       P */
 
- /*  where T12 or T21 is upper triangular. */
 
- /*  In particular, if B is square and nonsingular, the GQR factorization */
 
- /*  of A and B implicitly gives the QR factorization of inv(B)*A: */
 
- /*               inv(B)*A = Z'*(inv(T)*R) */
 
- /*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the */
 
- /*  transpose of the matrix Z. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The number of rows of the matrices A and B. N >= 0. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of columns of the matrix A.  M >= 0. */
 
- /*  P       (input) INTEGER */
 
- /*          The number of columns of the matrix B.  P >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M) */
 
- /*          On entry, the N-by-M matrix A. */
 
- /*          On exit, the elements on and above the diagonal of the array */
 
- /*          contain the min(N,M)-by-M upper trapezoidal matrix R (R is */
 
- /*          upper triangular if N >= M); the elements below the diagonal, */
 
- /*          with the array TAUA, represent the orthogonal matrix Q as a */
 
- /*          product of min(N,M) elementary reflectors (see Further */
 
- /*          Details). */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,N). */
 
- /*  TAUA    (output) DOUBLE PRECISION array, dimension (min(N,M)) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix Q (see Further Details). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,P) */
 
- /*          On entry, the N-by-P matrix B. */
 
- /*          On exit, if N <= P, the upper triangle of the subarray */
 
- /*          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */
 
- /*          if N > P, the elements on and above the (N-P)-th subdiagonal */
 
- /*          contain the N-by-P upper trapezoidal matrix T; the remaining */
 
- /*          elements, with the array TAUB, represent the orthogonal */
 
- /*          matrix Z as a product of elementary reflectors (see Further */
 
- /*          Details). */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,N). */
 
- /*  TAUB    (output) DOUBLE PRECISION array, dimension (min(N,P)) */
 
- /*          The scalar factors of the elementary reflectors which */
 
- /*          represent the orthogonal matrix Z (see Further Details). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. LWORK >= max(1,N,M,P). */
 
- /*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */
 
- /*          where NB1 is the optimal blocksize for the QR factorization */
 
- /*          of an N-by-M matrix, NB2 is the optimal blocksize for the */
 
- /*          RQ factorization of an N-by-P matrix, and NB3 is the optimal */
 
- /*          blocksize for a call of DORMQR. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrix Q is represented as a product of elementary reflectors */
 
- /*     Q = H(1) H(2) . . . H(k), where k = min(n,m). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - taua * v * v' */
 
- /*  where taua is a real scalar, and v is a real vector with */
 
- /*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
 
- /*  and taua in TAUA(i). */
 
- /*  To form Q explicitly, use LAPACK subroutine DORGQR. */
 
- /*  To use Q to update another matrix, use LAPACK subroutine DORMQR. */
 
- /*  The matrix Z is represented as a product of elementary reflectors */
 
- /*     Z = H(1) H(2) . . . H(k), where k = min(n,p). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - taub * v * v' */
 
- /*  where taub is a real scalar, and v is a real vector with */
 
- /*  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in */
 
- /*  B(n-k+i,1:p-k+i-1), and taub in TAUB(i). */
 
- /*  To form Z explicitly, use LAPACK subroutine DORGRQ. */
 
- /*  To use Z to update another matrix, use LAPACK subroutine DORMRQ. */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --taua;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     --taub;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, m, &c_n1, &c_n1);
 
-     nb2 = _starpu_ilaenv_(&c__1, "DGERQF", " ", n, p, &c_n1, &c_n1);
 
-     nb3 = _starpu_ilaenv_(&c__1, "DORMQR", " ", n, m, p, &c_n1);
 
- /* Computing MAX */
 
-     i__1 = max(nb1,nb2);
 
-     nb = max(i__1,nb3);
 
- /* Computing MAX */
 
-     i__1 = max(*n,*m);
 
-     lwkopt = max(i__1,*p) * nb;
 
-     work[1] = (doublereal) lwkopt;
 
-     lquery = *lwork == -1;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*m < 0) {
 
- 	*info = -2;
 
-     } else if (*p < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -8;
 
-     } else /* if(complicated condition) */ {
 
- /* Computing MAX */
 
- 	i__1 = max(1,*n), i__1 = max(i__1,*m);
 
- 	if (*lwork < max(i__1,*p) && ! lquery) {
 
- 	    *info = -11;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGGQRF", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     QR factorization of N-by-M matrix A: A = Q*R */
 
-     _starpu_dgeqrf_(n, m, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
 
-     lopt = (integer) work[1];
 
- /*     Update B := Q'*B. */
 
-     i__1 = min(*n,*m);
 
-     _starpu_dormqr_("Left", "Transpose", n, p, &i__1, &a[a_offset], lda, &taua[1], &b[
 
- 	    b_offset], ldb, &work[1], lwork, info);
 
- /* Computing MAX */
 
-     i__1 = lopt, i__2 = (integer) work[1];
 
-     lopt = max(i__1,i__2);
 
- /*     RQ factorization of N-by-P matrix B: B = T*Z. */
 
-     _starpu_dgerqf_(n, p, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
 
- /* Computing MAX */
 
-     i__1 = lopt, i__2 = (integer) work[1];
 
-     work[1] = (doublereal) max(i__1,i__2);
 
-     return 0;
 
- /*     End of DGGQRF */
 
- } /* _starpu_dggqrf_ */
 
 
  |