| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819 | /* dggesx.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c__0 = 0;static integer c_n1 = -1;static doublereal c_b42 = 0.;static doublereal c_b43 = 1.;/* Subroutine */ int _starpu_dggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp 	selctg, char *sense, integer *n, doublereal *a, integer *lda, 	doublereal *b, integer *ldb, integer *sdim, doublereal *alphar, 	doublereal *alphai, doublereal *beta, doublereal *vsl, integer *ldvsl, 	 doublereal *vsr, integer *ldvsr, doublereal *rconde, doublereal *	rcondv, doublereal *work, integer *lwork, integer *iwork, integer *	liwork, logical *bwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, 	    vsr_dim1, vsr_offset, i__1, i__2;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, ip;    doublereal pl, pr, dif[2];    integer ihi, ilo;    doublereal eps;    integer ijob;    doublereal anrm, bnrm;    integer ierr, itau, iwrk, lwrk;    extern logical _starpu_lsame_(char *, char *);    integer ileft, icols;    logical cursl, ilvsl, ilvsr;    integer irows;    extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *), _starpu_dggbak_(	    char *, char *, integer *, integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dggbal_(char *, integer *, doublereal *, integer 	    *, doublereal *, integer *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *);    logical lst2sl;    extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    logical ilascl, ilbscl;    extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), 	    _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *);    doublereal safmin;    extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *);    doublereal safmax;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum;    extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *);    integer ijobvl, iright;    extern /* Subroutine */ int _starpu_dtgsen_(integer *, logical *, logical *, 	    logical *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 	    integer *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ijobvr;    logical wantsb;    integer liwmin;    logical wantse, lastsl;    doublereal anrmto, bnrmto;    extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *);    integer minwrk, maxwrk;    logical wantsn;    doublereal smlnum;    extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    logical wantst, lquery, wantsv;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*     .. Function Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGESX computes for a pair of N-by-N real nonsymmetric matrices *//*  (A,B), the generalized eigenvalues, the real Schur form (S,T), and, *//*  optionally, the left and/or right matrices of Schur vectors (VSL and *//*  VSR).  This gives the generalized Schur factorization *//*       (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) *//*  Optionally, it also orders the eigenvalues so that a selected cluster *//*  of eigenvalues appears in the leading diagonal blocks of the upper *//*  quasi-triangular matrix S and the upper triangular matrix T; computes *//*  a reciprocal condition number for the average of the selected *//*  eigenvalues (RCONDE); and computes a reciprocal condition number for *//*  the right and left deflating subspaces corresponding to the selected *//*  eigenvalues (RCONDV). The leading columns of VSL and VSR then form *//*  an orthonormal basis for the corresponding left and right eigenspaces *//*  (deflating subspaces). *//*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w *//*  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is *//*  usually represented as the pair (alpha,beta), as there is a *//*  reasonable interpretation for beta=0 or for both being zero. *//*  A pair of matrices (S,T) is in generalized real Schur form if T is *//*  upper triangular with non-negative diagonal and S is block upper *//*  triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond *//*  to real generalized eigenvalues, while 2-by-2 blocks of S will be *//*  "standardized" by making the corresponding elements of T have the *//*  form: *//*          [  a  0  ] *//*          [  0  b  ] *//*  and the pair of corresponding 2-by-2 blocks in S and T will have a *//*  complex conjugate pair of generalized eigenvalues. *//*  Arguments *//*  ========= *//*  JOBVSL  (input) CHARACTER*1 *//*          = 'N':  do not compute the left Schur vectors; *//*          = 'V':  compute the left Schur vectors. *//*  JOBVSR  (input) CHARACTER*1 *//*          = 'N':  do not compute the right Schur vectors; *//*          = 'V':  compute the right Schur vectors. *//*  SORT    (input) CHARACTER*1 *//*          Specifies whether or not to order the eigenvalues on the *//*          diagonal of the generalized Schur form. *//*          = 'N':  Eigenvalues are not ordered; *//*          = 'S':  Eigenvalues are ordered (see SELCTG). *//*  SELCTG  (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments *//*          SELCTG must be declared EXTERNAL in the calling subroutine. *//*          If SORT = 'N', SELCTG is not referenced. *//*          If SORT = 'S', SELCTG is used to select eigenvalues to sort *//*          to the top left of the Schur form. *//*          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if *//*          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either *//*          one of a complex conjugate pair of eigenvalues is selected, *//*          then both complex eigenvalues are selected. *//*          Note that a selected complex eigenvalue may no longer satisfy *//*          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, *//*          since ordering may change the value of complex eigenvalues *//*          (especially if the eigenvalue is ill-conditioned), in this *//*          case INFO is set to N+3. *//*  SENSE   (input) CHARACTER*1 *//*          Determines which reciprocal condition numbers are computed. *//*          = 'N' : None are computed; *//*          = 'E' : Computed for average of selected eigenvalues only; *//*          = 'V' : Computed for selected deflating subspaces only; *//*          = 'B' : Computed for both. *//*          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. *//*  N       (input) INTEGER *//*          The order of the matrices A, B, VSL, and VSR.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the first of the pair of matrices. *//*          On exit, A has been overwritten by its generalized Schur *//*          form S. *//*  LDA     (input) INTEGER *//*          The leading dimension of A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) *//*          On entry, the second of the pair of matrices. *//*          On exit, B has been overwritten by its generalized Schur *//*          form T. *//*  LDB     (input) INTEGER *//*          The leading dimension of B.  LDB >= max(1,N). *//*  SDIM    (output) INTEGER *//*          If SORT = 'N', SDIM = 0. *//*          If SORT = 'S', SDIM = number of eigenvalues (after sorting) *//*          for which SELCTG is true.  (Complex conjugate pairs for which *//*          SELCTG is true for either eigenvalue count as 2.) *//*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) *//*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) *//*  BETA    (output) DOUBLE PRECISION array, dimension (N) *//*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will *//*          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i *//*          and BETA(j),j=1,...,N  are the diagonals of the complex Schur *//*          form (S,T) that would result if the 2-by-2 diagonal blocks of *//*          the real Schur form of (A,B) were further reduced to *//*          triangular form using 2-by-2 complex unitary transformations. *//*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if *//*          positive, then the j-th and (j+1)-st eigenvalues are a *//*          complex conjugate pair, with ALPHAI(j+1) negative. *//*          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) *//*          may easily over- or underflow, and BETA(j) may even be zero. *//*          Thus, the user should avoid naively computing the ratio. *//*          However, ALPHAR and ALPHAI will be always less than and *//*          usually comparable with norm(A) in magnitude, and BETA always *//*          less than and usually comparable with norm(B). *//*  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N) *//*          If JOBVSL = 'V', VSL will contain the left Schur vectors. *//*          Not referenced if JOBVSL = 'N'. *//*  LDVSL   (input) INTEGER *//*          The leading dimension of the matrix VSL. LDVSL >=1, and *//*          if JOBVSL = 'V', LDVSL >= N. *//*  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N) *//*          If JOBVSR = 'V', VSR will contain the right Schur vectors. *//*          Not referenced if JOBVSR = 'N'. *//*  LDVSR   (input) INTEGER *//*          The leading dimension of the matrix VSR. LDVSR >= 1, and *//*          if JOBVSR = 'V', LDVSR >= N. *//*  RCONDE  (output) DOUBLE PRECISION array, dimension ( 2 ) *//*          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the *//*          reciprocal condition numbers for the average of the selected *//*          eigenvalues. *//*          Not referenced if SENSE = 'N' or 'V'. *//*  RCONDV  (output) DOUBLE PRECISION array, dimension ( 2 ) *//*          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the *//*          reciprocal condition numbers for the selected deflating *//*          subspaces. *//*          Not referenced if SENSE = 'N' or 'E'. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', *//*          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else *//*          LWORK >= max( 8*N, 6*N+16 ). *//*          Note that 2*SDIM*(N-SDIM) <= N*N/2. *//*          Note also that an error is only returned if *//*          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' *//*          this may not be large enough. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the bound on the optimal size of the WORK *//*          array and the minimum size of the IWORK array, returns these *//*          values as the first entries of the WORK and IWORK arrays, and *//*          no error message related to LWORK or LIWORK is issued by *//*          XERBLA. *//*  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK)) *//*          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK. *//*          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise *//*          LIWORK >= N+6. *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the bound on the optimal size of the *//*          WORK array and the minimum size of the IWORK array, returns *//*          these values as the first entries of the WORK and IWORK *//*          arrays, and no error message related to LWORK or LIWORK is *//*          issued by XERBLA. *//*  BWORK   (workspace) LOGICAL array, dimension (N) *//*          Not referenced if SORT = 'N'. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          = 1,...,N: *//*                The QZ iteration failed.  (A,B) are not in Schur *//*                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should *//*                be correct for j=INFO+1,...,N. *//*          > N:  =N+1: other than QZ iteration failed in DHGEQZ *//*                =N+2: after reordering, roundoff changed values of *//*                      some complex eigenvalues so that leading *//*                      eigenvalues in the Generalized Schur form no *//*                      longer satisfy SELCTG=.TRUE.  This could also *//*                      be caused due to scaling. *//*                =N+3: reordering failed in DTGSEN. *//*  Further details *//*  =============== *//*  An approximate (asymptotic) bound on the average absolute error of *//*  the selected eigenvalues is *//*       EPS * norm((A, B)) / RCONDE( 1 ). *//*  An approximate (asymptotic) bound on the maximum angular error in *//*  the computed deflating subspaces is *//*       EPS * norm((A, B)) / RCONDV( 2 ). *//*  See LAPACK User's Guide, section 4.11 for more information. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --alphar;    --alphai;    --beta;    vsl_dim1 = *ldvsl;    vsl_offset = 1 + vsl_dim1;    vsl -= vsl_offset;    vsr_dim1 = *ldvsr;    vsr_offset = 1 + vsr_dim1;    vsr -= vsr_offset;    --rconde;    --rcondv;    --work;    --iwork;    --bwork;    /* Function Body */    if (_starpu_lsame_(jobvsl, "N")) {	ijobvl = 1;	ilvsl = FALSE_;    } else if (_starpu_lsame_(jobvsl, "V")) {	ijobvl = 2;	ilvsl = TRUE_;    } else {	ijobvl = -1;	ilvsl = FALSE_;    }    if (_starpu_lsame_(jobvsr, "N")) {	ijobvr = 1;	ilvsr = FALSE_;    } else if (_starpu_lsame_(jobvsr, "V")) {	ijobvr = 2;	ilvsr = TRUE_;    } else {	ijobvr = -1;	ilvsr = FALSE_;    }    wantst = _starpu_lsame_(sort, "S");    wantsn = _starpu_lsame_(sense, "N");    wantse = _starpu_lsame_(sense, "E");    wantsv = _starpu_lsame_(sense, "V");    wantsb = _starpu_lsame_(sense, "B");    lquery = *lwork == -1 || *liwork == -1;    if (wantsn) {	ijob = 0;    } else if (wantse) {	ijob = 1;    } else if (wantsv) {	ijob = 2;    } else if (wantsb) {	ijob = 4;    }/*     Test the input arguments */    *info = 0;    if (ijobvl <= 0) {	*info = -1;    } else if (ijobvr <= 0) {	*info = -2;    } else if (! wantst && ! _starpu_lsame_(sort, "N")) {	*info = -3;    } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! 	    wantsn) {	*info = -5;    } else if (*n < 0) {	*info = -6;    } else if (*lda < max(1,*n)) {	*info = -8;    } else if (*ldb < max(1,*n)) {	*info = -10;    } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {	*info = -16;    } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {	*info = -18;    }/*     Compute workspace *//*      (Note: Comments in the code beginning "Workspace:" describe the *//*       minimal amount of workspace needed at that point in the code, *//*       as well as the preferred amount for good performance. *//*       NB refers to the optimal block size for the immediately *//*       following subroutine, as returned by ILAENV.) */    if (*info == 0) {	if (*n > 0) {/* Computing MAX */	    i__1 = *n << 3, i__2 = *n * 6 + 16;	    minwrk = max(i__1,i__2);	    maxwrk = minwrk - *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, &		    c__1, n, &c__0);/* Computing MAX */	    i__1 = maxwrk, i__2 = minwrk - *n + *n * _starpu_ilaenv_(&c__1, "DORMQR", 		    " ", n, &c__1, n, &c_n1);	    maxwrk = max(i__1,i__2);	    if (ilvsl) {/* Computing MAX */		i__1 = maxwrk, i__2 = minwrk - *n + *n * _starpu_ilaenv_(&c__1, "DOR"			"GQR", " ", n, &c__1, n, &c_n1);		maxwrk = max(i__1,i__2);	    }	    lwrk = maxwrk;	    if (ijob >= 1) {/* Computing MAX */		i__1 = lwrk, i__2 = *n * *n / 2;		lwrk = max(i__1,i__2);	    }	} else {	    minwrk = 1;	    maxwrk = 1;	    lwrk = 1;	}	work[1] = (doublereal) lwrk;	if (wantsn || *n == 0) {	    liwmin = 1;	} else {	    liwmin = *n + 6;	}	iwork[1] = liwmin;	if (*lwork < minwrk && ! lquery) {	    *info = -22;	} else if (*liwork < liwmin && ! lquery) {	    *info = -24;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGGESX", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	*sdim = 0;	return 0;    }/*     Get machine constants */    eps = _starpu_dlamch_("P");    safmin = _starpu_dlamch_("S");    safmax = 1. / safmin;    _starpu_dlabad_(&safmin, &safmax);    smlnum = sqrt(safmin) / eps;    bignum = 1. / smlnum;/*     Scale A if max element outside range [SMLNUM,BIGNUM] */    anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);    ilascl = FALSE_;    if (anrm > 0. && anrm < smlnum) {	anrmto = smlnum;	ilascl = TRUE_;    } else if (anrm > bignum) {	anrmto = bignum;	ilascl = TRUE_;    }    if (ilascl) {	_starpu_dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &		ierr);    }/*     Scale B if max element outside range [SMLNUM,BIGNUM] */    bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);    ilbscl = FALSE_;    if (bnrm > 0. && bnrm < smlnum) {	bnrmto = smlnum;	ilbscl = TRUE_;    } else if (bnrm > bignum) {	bnrmto = bignum;	ilbscl = TRUE_;    }    if (ilbscl) {	_starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &		ierr);    }/*     Permute the matrix to make it more nearly triangular *//*     (Workspace: need 6*N + 2*N for permutation parameters) */    ileft = 1;    iright = *n + 1;    iwrk = iright + *n;    _starpu_dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[	    ileft], &work[iright], &work[iwrk], &ierr);/*     Reduce B to triangular form (QR decomposition of B) *//*     (Workspace: need N, prefer N*NB) */    irows = ihi + 1 - ilo;    icols = *n + 1 - ilo;    itau = iwrk;    iwrk = itau + irows;    i__1 = *lwork + 1 - iwrk;    _starpu_dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[	    iwrk], &i__1, &ierr);/*     Apply the orthogonal transformation to matrix A *//*     (Workspace: need N, prefer N*NB) */    i__1 = *lwork + 1 - iwrk;    _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &	    ierr);/*     Initialize VSL *//*     (Workspace: need N, prefer N*NB) */    if (ilvsl) {	_starpu_dlaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl);	if (irows > 1) {	    i__1 = irows - 1;	    i__2 = irows - 1;	    _starpu_dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[		    ilo + 1 + ilo * vsl_dim1], ldvsl);	}	i__1 = *lwork + 1 - iwrk;	_starpu_dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &		work[itau], &work[iwrk], &i__1, &ierr);    }/*     Initialize VSR */    if (ilvsr) {	_starpu_dlaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr);    }/*     Reduce to generalized Hessenberg form *//*     (Workspace: none needed) */    _starpu_dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 	    ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);    *sdim = 0;/*     Perform QZ algorithm, computing Schur vectors if desired *//*     (Workspace: need N) */    iwrk = itau;    i__1 = *lwork + 1 - iwrk;    _starpu_dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);    if (ierr != 0) {	if (ierr > 0 && ierr <= *n) {	    *info = ierr;	} else if (ierr > *n && ierr <= *n << 1) {	    *info = ierr - *n;	} else {	    *info = *n + 1;	}	goto L60;    }/*     Sort eigenvalues ALPHA/BETA and compute the reciprocal of *//*     condition number(s) *//*     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) *//*                 otherwise, need 8*(N+1) ) */    if (wantst) {/*        Undo scaling on eigenvalues before SELCTGing */	if (ilascl) {	    _starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], 		    n, &ierr);	    _starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], 		    n, &ierr);	}	if (ilbscl) {	    _starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, 		    &ierr);	}/*        Select eigenvalues */	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);/* L10: */	}/*        Reorder eigenvalues, transform Generalized Schur vectors, and *//*        compute reciprocal condition numbers */	i__1 = *lwork - iwrk + 1;	_starpu_dtgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[		b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[		vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr, 		dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr);	if (ijob >= 1) {/* Computing MAX */	    i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);	    maxwrk = max(i__1,i__2);	}	if (ierr == -22) {/*            not enough real workspace */	    *info = -22;	} else {	    if (ijob == 1 || ijob == 4) {		rconde[1] = pl;		rconde[2] = pr;	    }	    if (ijob == 2 || ijob == 4) {		rcondv[1] = dif[0];		rcondv[2] = dif[1];	    }	    if (ierr == 1) {		*info = *n + 3;	    }	}    }/*     Apply permutation to VSL and VSR *//*     (Workspace: none needed) */    if (ilvsl) {	_starpu_dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[		vsl_offset], ldvsl, &ierr);    }    if (ilvsr) {	_starpu_dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[		vsr_offset], ldvsr, &ierr);    }/*     Check if unscaling would cause over/underflow, if so, rescale *//*     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of *//*     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */    if (ilascl) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (alphai[i__] != 0.) {		if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[			i__] > anrm / anrmto) {		    work[1] = (d__1 = a[i__ + i__ * a_dim1] / alphar[i__], 			    abs(d__1));		    beta[i__] *= work[1];		    alphar[i__] *= work[1];		    alphai[i__] *= work[1];		} else if (alphai[i__] / safmax > anrmto / anrm || safmin / 			alphai[i__] > anrm / anrmto) {		    work[1] = (d__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[			    i__], abs(d__1));		    beta[i__] *= work[1];		    alphar[i__] *= work[1];		    alphai[i__] *= work[1];		}	    }/* L20: */	}    }    if (ilbscl) {	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (alphai[i__] != 0.) {		if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] 			> bnrm / bnrmto) {		    work[1] = (d__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(			    d__1));		    beta[i__] *= work[1];		    alphar[i__] *= work[1];		    alphai[i__] *= work[1];		}	    }/* L30: */	}    }/*     Undo scaling */    if (ilascl) {	_starpu_dlascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &		ierr);	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &		ierr);	_starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &		ierr);    }    if (ilbscl) {	_starpu_dlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &		ierr);	_starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &		ierr);    }    if (wantst) {/*        Check if reordering is correct */	lastsl = TRUE_;	lst2sl = TRUE_;	*sdim = 0;	ip = 0;	i__1 = *n;	for (i__ = 1; i__ <= i__1; ++i__) {	    cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);	    if (alphai[i__] == 0.) {		if (cursl) {		    ++(*sdim);		}		ip = 0;		if (cursl && ! lastsl) {		    *info = *n + 2;		}	    } else {		if (ip == 1) {/*                 Last eigenvalue of conjugate pair */		    cursl = cursl || lastsl;		    lastsl = cursl;		    if (cursl) {			*sdim += 2;		    }		    ip = -1;		    if (cursl && ! lst2sl) {			*info = *n + 2;		    }		} else {/*                 First eigenvalue of conjugate pair */		    ip = 1;		}	    }	    lst2sl = lastsl;	    lastsl = cursl;/* L50: */	}    }L60:    work[1] = (doublereal) maxwrk;    iwork[1] = liwmin;    return 0;/*     End of DGGESX */} /* _starpu_dggesx_ */
 |