| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 | /* dgetri.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__2 = 2;static doublereal c_b20 = -1.;static doublereal c_b22 = 1.;/* Subroutine */ int _starpu_dgetri_(integer *n, doublereal *a, integer *lda, integer 	*ipiv, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, j, jb, nb, jj, jp, nn, iws;    extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *),	     _starpu_dgemv_(char *, integer *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *);    integer nbmin;    extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_xerbla_(	    char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ldwork;    extern /* Subroutine */ int _starpu_dtrtri_(char *, char *, integer *, doublereal 	    *, integer *, integer *);    integer lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGETRI computes the inverse of a matrix using the LU factorization *//*  computed by DGETRF. *//*  This method inverts U and then computes inv(A) by solving the system *//*  inv(A)*L = inv(U) for inv(A). *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the factors L and U from the factorization *//*          A = P*L*U as computed by DGETRF. *//*          On exit, if INFO = 0, the inverse of the original matrix A. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  IPIV    (input) INTEGER array, dimension (N) *//*          The pivot indices from DGETRF; for 1<=i<=N, row i of the *//*          matrix was interchanged with row IPIV(i). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO=0, then WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,N). *//*          For optimal performance LWORK >= N*NB, where NB is *//*          the optimal blocksize returned by ILAENV. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is *//*                singular and its inverse could not be computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --ipiv;    --work;    /* Function Body */    *info = 0;    nb = _starpu_ilaenv_(&c__1, "DGETRI", " ", n, &c_n1, &c_n1, &c_n1);    lwkopt = *n * nb;    work[1] = (doublereal) lwkopt;    lquery = *lwork == -1;    if (*n < 0) {	*info = -1;    } else if (*lda < max(1,*n)) {	*info = -3;    } else if (*lwork < max(1,*n) && ! lquery) {	*info = -6;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGETRI", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Form inv(U).  If INFO > 0 from DTRTRI, then U is singular, *//*     and the inverse is not computed. */    _starpu_dtrtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);    if (*info > 0) {	return 0;    }    nbmin = 2;    ldwork = *n;    if (nb > 1 && nb < *n) {/* Computing MAX */	i__1 = ldwork * nb;	iws = max(i__1,1);	if (*lwork < iws) {	    nb = *lwork / ldwork;/* Computing MAX */	    i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGETRI", " ", n, &c_n1, &c_n1, &		    c_n1);	    nbmin = max(i__1,i__2);	}    } else {	iws = *n;    }/*     Solve the equation inv(A)*L = inv(U) for inv(A). */    if (nb < nbmin || nb >= *n) {/*        Use unblocked code. */	for (j = *n; j >= 1; --j) {/*           Copy current column of L to WORK and replace with zeros. */	    i__1 = *n;	    for (i__ = j + 1; i__ <= i__1; ++i__) {		work[i__] = a[i__ + j * a_dim1];		a[i__ + j * a_dim1] = 0.;/* L10: */	    }/*           Compute current column of inv(A). */	    if (j < *n) {		i__1 = *n - j;		_starpu_dgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1 			+ 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1 			+ 1], &c__1);	    }/* L20: */	}    } else {/*        Use blocked code. */	nn = (*n - 1) / nb * nb + 1;	i__1 = -nb;	for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {/* Computing MIN */	    i__2 = nb, i__3 = *n - j + 1;	    jb = min(i__2,i__3);/*           Copy current block column of L to WORK and replace with *//*           zeros. */	    i__2 = j + jb - 1;	    for (jj = j; jj <= i__2; ++jj) {		i__3 = *n;		for (i__ = jj + 1; i__ <= i__3; ++i__) {		    work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1];		    a[i__ + jj * a_dim1] = 0.;/* L30: */		}/* L40: */	    }/*           Compute current block column of inv(A). */	    if (j + jb <= *n) {		i__2 = *n - j - jb + 1;		_starpu_dgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20, 			&a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &			ldwork, &c_b22, &a[j * a_dim1 + 1], lda);	    }	    _starpu_dtrsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, &		    work[j], &ldwork, &a[j * a_dim1 + 1], lda);/* L50: */	}    }/*     Apply column interchanges. */    for (j = *n - 1; j >= 1; --j) {	jp = ipiv[j];	if (jp != j) {	    _starpu_dswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);	}/* L60: */    }    work[1] = (doublereal) iws;    return 0;/*     End of DGETRI */} /* _starpu_dgetri_ */
 |