| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588 | 
							- /* dgesvx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int _starpu_dgesvx_(char *fact, char *trans, integer *n, integer *
 
- 	nrhs, doublereal *a, integer *lda, doublereal *af, integer *ldaf, 
 
- 	integer *ipiv, char *equed, doublereal *r__, doublereal *c__, 
 
- 	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
 
- 	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
 
- 	iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
 
- 	    x_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal amax;
 
-     char norm[1];
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal rcmin, rcmax, anorm;
 
-     logical equil;
 
-     extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *);
 
-     extern /* Subroutine */ int _starpu_dlaqge_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, char *), _starpu_dgecon_(char *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *);
 
-     doublereal colcnd;
 
-     logical nofact;
 
-     extern /* Subroutine */ int _starpu_dgeequ_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *), _starpu_dgerfs_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dgetrf_(integer *, integer *, doublereal *, integer *, integer *, 
 
- 	    integer *), _starpu_dlacpy_(char *, integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *), _starpu_xerbla_(char *, 
 
- 	    integer *);
 
-     doublereal bignum;
 
-     extern doublereal _starpu_dlantr_(char *, char *, char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *);
 
-     integer infequ;
 
-     logical colequ;
 
-     extern /* Subroutine */ int _starpu_dgetrs_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *);
 
-     doublereal rowcnd;
 
-     logical notran;
 
-     doublereal smlnum;
 
-     logical rowequ;
 
-     doublereal rpvgrw;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGESVX uses the LU factorization to compute the solution to a real */
 
- /*  system of linear equations */
 
- /*     A * X = B, */
 
- /*  where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
 
- /*  Error bounds on the solution and a condition estimate are also */
 
- /*  provided. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  The following steps are performed: */
 
- /*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
 
- /*     the system: */
 
- /*        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B */
 
- /*        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
 
- /*        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
 
- /*     Whether or not the system will be equilibrated depends on the */
 
- /*     scaling of the matrix A, but if equilibration is used, A is */
 
- /*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
 
- /*     or diag(C)*B (if TRANS = 'T' or 'C'). */
 
- /*  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
 
- /*     matrix A (after equilibration if FACT = 'E') as */
 
- /*        A = P * L * U, */
 
- /*     where P is a permutation matrix, L is a unit lower triangular */
 
- /*     matrix, and U is upper triangular. */
 
- /*  3. If some U(i,i)=0, so that U is exactly singular, then the routine */
 
- /*     returns with INFO = i. Otherwise, the factored form of A is used */
 
- /*     to estimate the condition number of the matrix A.  If the */
 
- /*     reciprocal of the condition number is less than machine precision, */
 
- /*     INFO = N+1 is returned as a warning, but the routine still goes on */
 
- /*     to solve for X and compute error bounds as described below. */
 
- /*  4. The system of equations is solved for X using the factored form */
 
- /*     of A. */
 
- /*  5. Iterative refinement is applied to improve the computed solution */
 
- /*     matrix and calculate error bounds and backward error estimates */
 
- /*     for it. */
 
- /*  6. If equilibration was used, the matrix X is premultiplied by */
 
- /*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
 
- /*     that it solves the original system before equilibration. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  FACT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the factored form of the matrix A is */
 
- /*          supplied on entry, and if not, whether the matrix A should be */
 
- /*          equilibrated before it is factored. */
 
- /*          = 'F':  On entry, AF and IPIV contain the factored form of A. */
 
- /*                  If EQUED is not 'N', the matrix A has been */
 
- /*                  equilibrated with scaling factors given by R and C. */
 
- /*                  A, AF, and IPIV are not modified. */
 
- /*          = 'N':  The matrix A will be copied to AF and factored. */
 
- /*          = 'E':  The matrix A will be equilibrated if necessary, then */
 
- /*                  copied to AF and factored. */
 
- /*  TRANS   (input) CHARACTER*1 */
 
- /*          Specifies the form of the system of equations: */
 
- /*          = 'N':  A * X = B     (No transpose) */
 
- /*          = 'T':  A**T * X = B  (Transpose) */
 
- /*          = 'C':  A**H * X = B  (Transpose) */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X.  NRHS >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is */
 
- /*          not 'N', then A must have been equilibrated by the scaling */
 
- /*          factors in R and/or C.  A is not modified if FACT = 'F' or */
 
- /*          'N', or if FACT = 'E' and EQUED = 'N' on exit. */
 
- /*          On exit, if EQUED .ne. 'N', A is scaled as follows: */
 
- /*          EQUED = 'R':  A := diag(R) * A */
 
- /*          EQUED = 'C':  A := A * diag(C) */
 
- /*          EQUED = 'B':  A := diag(R) * A * diag(C). */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N) */
 
- /*          If FACT = 'F', then AF is an input argument and on entry */
 
- /*          contains the factors L and U from the factorization */
 
- /*          A = P*L*U as computed by DGETRF.  If EQUED .ne. 'N', then */
 
- /*          AF is the factored form of the equilibrated matrix A. */
 
- /*          If FACT = 'N', then AF is an output argument and on exit */
 
- /*          returns the factors L and U from the factorization A = P*L*U */
 
- /*          of the original matrix A. */
 
- /*          If FACT = 'E', then AF is an output argument and on exit */
 
- /*          returns the factors L and U from the factorization A = P*L*U */
 
- /*          of the equilibrated matrix A (see the description of A for */
 
- /*          the form of the equilibrated matrix). */
 
- /*  LDAF    (input) INTEGER */
 
- /*          The leading dimension of the array AF.  LDAF >= max(1,N). */
 
- /*  IPIV    (input or output) INTEGER array, dimension (N) */
 
- /*          If FACT = 'F', then IPIV is an input argument and on entry */
 
- /*          contains the pivot indices from the factorization A = P*L*U */
 
- /*          as computed by DGETRF; row i of the matrix was interchanged */
 
- /*          with row IPIV(i). */
 
- /*          If FACT = 'N', then IPIV is an output argument and on exit */
 
- /*          contains the pivot indices from the factorization A = P*L*U */
 
- /*          of the original matrix A. */
 
- /*          If FACT = 'E', then IPIV is an output argument and on exit */
 
- /*          contains the pivot indices from the factorization A = P*L*U */
 
- /*          of the equilibrated matrix A. */
 
- /*  EQUED   (input or output) CHARACTER*1 */
 
- /*          Specifies the form of equilibration that was done. */
 
- /*          = 'N':  No equilibration (always true if FACT = 'N'). */
 
- /*          = 'R':  Row equilibration, i.e., A has been premultiplied by */
 
- /*                  diag(R). */
 
- /*          = 'C':  Column equilibration, i.e., A has been postmultiplied */
 
- /*                  by diag(C). */
 
- /*          = 'B':  Both row and column equilibration, i.e., A has been */
 
- /*                  replaced by diag(R) * A * diag(C). */
 
- /*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
 
- /*          output argument. */
 
- /*  R       (input or output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The row scale factors for A.  If EQUED = 'R' or 'B', A is */
 
- /*          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
 
- /*          is not accessed.  R is an input argument if FACT = 'F'; */
 
- /*          otherwise, R is an output argument.  If FACT = 'F' and */
 
- /*          EQUED = 'R' or 'B', each element of R must be positive. */
 
- /*  C       (input or output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The column scale factors for A.  If EQUED = 'C' or 'B', A is */
 
- /*          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
 
- /*          is not accessed.  C is an input argument if FACT = 'F'; */
 
- /*          otherwise, C is an output argument.  If FACT = 'F' and */
 
- /*          EQUED = 'C' or 'B', each element of C must be positive. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N-by-NRHS right hand side matrix B. */
 
- /*          On exit, */
 
- /*          if EQUED = 'N', B is not modified; */
 
- /*          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
 
- /*          diag(R)*B; */
 
- /*          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
 
- /*          overwritten by diag(C)*B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
 
- /*          to the original system of equations.  Note that A and B are */
 
- /*          modified on exit if EQUED .ne. 'N', and the solution to the */
 
- /*          equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
 
- /*          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
 
- /*          and EQUED = 'R' or 'B'. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The estimate of the reciprocal condition number of the matrix */
 
- /*          A after equilibration (if done).  If RCOND is less than the */
 
- /*          machine precision (in particular, if RCOND = 0), the matrix */
 
- /*          is singular to working precision.  This condition is */
 
- /*          indicated by a return code of INFO > 0. */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The estimated forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j).  The estimate is as reliable as */
 
- /*          the estimate for RCOND, and is almost always a slight */
 
- /*          overestimate of the true error. */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in */
 
- /*          any element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (4*N) */
 
- /*          On exit, WORK(1) contains the reciprocal pivot growth */
 
- /*          factor norm(A)/norm(U). The "max absolute element" norm is */
 
- /*          used. If WORK(1) is much less than 1, then the stability */
 
- /*          of the LU factorization of the (equilibrated) matrix A */
 
- /*          could be poor. This also means that the solution X, condition */
 
- /*          estimator RCOND, and forward error bound FERR could be */
 
- /*          unreliable. If factorization fails with 0<INFO<=N, then */
 
- /*          WORK(1) contains the reciprocal pivot growth factor for the */
 
- /*          leading INFO columns of A. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, and i is */
 
- /*                <= N:  U(i,i) is exactly zero.  The factorization has */
 
- /*                       been completed, but the factor U is exactly */
 
- /*                       singular, so the solution and error bounds */
 
- /*                       could not be computed. RCOND = 0 is returned. */
 
- /*                = N+1: U is nonsingular, but RCOND is less than machine */
 
- /*                       precision, meaning that the matrix is singular */
 
- /*                       to working precision.  Nevertheless, the */
 
- /*                       solution and error bounds are computed because */
 
- /*                       there are a number of situations where the */
 
- /*                       computed solution can be more accurate than the */
 
- /*                       value of RCOND would suggest. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     af_dim1 = *ldaf;
 
-     af_offset = 1 + af_dim1;
 
-     af -= af_offset;
 
-     --ipiv;
 
-     --r__;
 
-     --c__;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nofact = _starpu_lsame_(fact, "N");
 
-     equil = _starpu_lsame_(fact, "E");
 
-     notran = _starpu_lsame_(trans, "N");
 
-     if (nofact || equil) {
 
- 	*(unsigned char *)equed = 'N';
 
- 	rowequ = FALSE_;
 
- 	colequ = FALSE_;
 
-     } else {
 
- 	rowequ = _starpu_lsame_(equed, "R") || _starpu_lsame_(equed, 
 
- 		"B");
 
- 	colequ = _starpu_lsame_(equed, "C") || _starpu_lsame_(equed, 
 
- 		"B");
 
- 	smlnum = _starpu_dlamch_("Safe minimum");
 
- 	bignum = 1. / smlnum;
 
-     }
 
- /*     Test the input parameters. */
 
-     if (! nofact && ! equil && ! _starpu_lsame_(fact, "F")) {
 
- 	*info = -1;
 
-     } else if (! notran && ! _starpu_lsame_(trans, "T") && ! 
 
- 	    _starpu_lsame_(trans, "C")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -4;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldaf < max(1,*n)) {
 
- 	*info = -8;
 
-     } else if (_starpu_lsame_(fact, "F") && ! (rowequ || colequ 
 
- 	    || _starpu_lsame_(equed, "N"))) {
 
- 	*info = -10;
 
-     } else {
 
- 	if (rowequ) {
 
- 	    rcmin = bignum;
 
- 	    rcmax = 0.;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		d__1 = rcmin, d__2 = r__[j];
 
- 		rcmin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 		d__1 = rcmax, d__2 = r__[j];
 
- 		rcmax = max(d__1,d__2);
 
- /* L10: */
 
- 	    }
 
- 	    if (rcmin <= 0.) {
 
- 		*info = -11;
 
- 	    } else if (*n > 0) {
 
- 		rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
 
- 	    } else {
 
- 		rowcnd = 1.;
 
- 	    }
 
- 	}
 
- 	if (colequ && *info == 0) {
 
- 	    rcmin = bignum;
 
- 	    rcmax = 0.;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- /* Computing MIN */
 
- 		d__1 = rcmin, d__2 = c__[j];
 
- 		rcmin = min(d__1,d__2);
 
- /* Computing MAX */
 
- 		d__1 = rcmax, d__2 = c__[j];
 
- 		rcmax = max(d__1,d__2);
 
- /* L20: */
 
- 	    }
 
- 	    if (rcmin <= 0.) {
 
- 		*info = -12;
 
- 	    } else if (*n > 0) {
 
- 		colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
 
- 	    } else {
 
- 		colcnd = 1.;
 
- 	    }
 
- 	}
 
- 	if (*info == 0) {
 
- 	    if (*ldb < max(1,*n)) {
 
- 		*info = -14;
 
- 	    } else if (*ldx < max(1,*n)) {
 
- 		*info = -16;
 
- 	    }
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGESVX", &i__1);
 
- 	return 0;
 
-     }
 
-     if (equil) {
 
- /*        Compute row and column scalings to equilibrate the matrix A. */
 
- 	_starpu_dgeequ_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd, &
 
- 		amax, &infequ);
 
- 	if (infequ == 0) {
 
- /*           Equilibrate the matrix. */
 
- 	    _starpu_dlaqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &
 
- 		    colcnd, &amax, equed);
 
- 	    rowequ = _starpu_lsame_(equed, "R") || _starpu_lsame_(equed, 
 
- 		     "B");
 
- 	    colequ = _starpu_lsame_(equed, "C") || _starpu_lsame_(equed, 
 
- 		     "B");
 
- 	}
 
-     }
 
- /*     Scale the right hand side. */
 
-     if (notran) {
 
- 	if (rowequ) {
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *n;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    b[i__ + j * b_dim1] = r__[i__] * b[i__ + j * b_dim1];
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- 	}
 
-     } else if (colequ) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *n;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		b[i__ + j * b_dim1] = c__[i__] * b[i__ + j * b_dim1];
 
- /* L50: */
 
- 	    }
 
- /* L60: */
 
- 	}
 
-     }
 
-     if (nofact || equil) {
 
- /*        Compute the LU factorization of A. */
 
- 	_starpu_dlacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);
 
- 	_starpu_dgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);
 
- /*        Return if INFO is non-zero. */
 
- 	if (*info > 0) {
 
- /*           Compute the reciprocal pivot growth factor of the */
 
- /*           leading rank-deficient INFO columns of A. */
 
- 	    rpvgrw = _starpu_dlantr_("M", "U", "N", info, info, &af[af_offset], ldaf, 
 
- 		    &work[1]);
 
- 	    if (rpvgrw == 0.) {
 
- 		rpvgrw = 1.;
 
- 	    } else {
 
- 		rpvgrw = _starpu_dlange_("M", n, info, &a[a_offset], lda, &work[1]) / rpvgrw;
 
- 	    }
 
- 	    work[1] = rpvgrw;
 
- 	    *rcond = 0.;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Compute the norm of the matrix A and the */
 
- /*     reciprocal pivot growth factor RPVGRW. */
 
-     if (notran) {
 
- 	*(unsigned char *)norm = '1';
 
-     } else {
 
- 	*(unsigned char *)norm = 'I';
 
-     }
 
-     anorm = _starpu_dlange_(norm, n, n, &a[a_offset], lda, &work[1]);
 
-     rpvgrw = _starpu_dlantr_("M", "U", "N", n, n, &af[af_offset], ldaf, &work[1]);
 
-     if (rpvgrw == 0.) {
 
- 	rpvgrw = 1.;
 
-     } else {
 
- 	rpvgrw = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]) / 
 
- 		rpvgrw;
 
-     }
 
- /*     Compute the reciprocal of the condition number of A. */
 
-     _starpu_dgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1], 
 
- 	     info);
 
- /*     Compute the solution matrix X. */
 
-     _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 
-     _starpu_dgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, 
 
- 	     info);
 
- /*     Use iterative refinement to improve the computed solution and */
 
- /*     compute error bounds and backward error estimates for it. */
 
-     _starpu_dgerfs_(trans, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], 
 
- 	     &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[
 
- 	    1], &iwork[1], info);
 
- /*     Transform the solution matrix X to a solution of the original */
 
- /*     system. */
 
-     if (notran) {
 
- 	if (colequ) {
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = *n;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    x[i__ + j * x_dim1] = c__[i__] * x[i__ + j * x_dim1];
 
- /* L70: */
 
- 		}
 
- /* L80: */
 
- 	    }
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		ferr[j] /= colcnd;
 
- /* L90: */
 
- 	    }
 
- 	}
 
-     } else if (rowequ) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *n;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		x[i__ + j * x_dim1] = r__[i__] * x[i__ + j * x_dim1];
 
- /* L100: */
 
- 	    }
 
- /* L110: */
 
- 	}
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    ferr[j] /= rowcnd;
 
- /* L120: */
 
- 	}
 
-     }
 
-     work[1] = rpvgrw;
 
- /*     Set INFO = N+1 if the matrix is singular to working precision. */
 
-     if (*rcond < _starpu_dlamch_("Epsilon")) {
 
- 	*info = *n + 1;
 
-     }
 
-     return 0;
 
- /*     End of DGESVX */
 
- } /* _starpu_dgesvx_ */
 
 
  |