| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 | /* dgeqlf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__3 = 3;static integer c__2 = 2;/* Subroutine */ int _starpu_dgeqlf_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *tau, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;    /* Local variables */    integer i__, k, ib, nb, ki, kk, mu, nu, nx, iws, nbmin, iinfo;    extern /* Subroutine */ int _starpu_dgeql2_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *), _starpu_dlarfb_(char *, 	     char *, char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *), _starpu_dlarft_(char *, char *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer ldwork, lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEQLF computes a QL factorization of a real M-by-N matrix A: *//*  A = Q * L. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, *//*          if m >= n, the lower triangle of the subarray *//*          A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; *//*          if m <= n, the elements on and below the (n-m)-th *//*          superdiagonal contain the M-by-N lower trapezoidal matrix L; *//*          the remaining elements, with the array TAU, represent the *//*          orthogonal matrix Q as a product of elementary reflectors *//*          (see Further Details). *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,N). *//*          For optimum performance LWORK >= N*NB, where NB is the *//*          optimal blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(k) . . . H(2) H(1), where k = min(m,n). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in *//*  A(1:m-k+i-1,n-k+i), and tau in TAU(i). *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    lquery = *lwork == -1;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info == 0) {	k = min(*m,*n);	if (k == 0) {	    lwkopt = 1;	} else {	    nb = _starpu_ilaenv_(&c__1, "DGEQLF", " ", m, n, &c_n1, &c_n1);	    lwkopt = *n * nb;	}	work[1] = (doublereal) lwkopt;	if (*lwork < max(1,*n) && ! lquery) {	    *info = -7;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGEQLF", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (k == 0) {	return 0;    }    nbmin = 2;    nx = 1;    iws = *n;    if (nb > 1 && nb < k) {/*        Determine when to cross over from blocked to unblocked code. *//* Computing MAX */	i__1 = 0, i__2 = _starpu_ilaenv_(&c__3, "DGEQLF", " ", m, n, &c_n1, &c_n1);	nx = max(i__1,i__2);	if (nx < k) {/*           Determine if workspace is large enough for blocked code. */	    ldwork = *n;	    iws = ldwork * nb;	    if (*lwork < iws) {/*              Not enough workspace to use optimal NB:  reduce NB and *//*              determine the minimum value of NB. */		nb = *lwork / ldwork;/* Computing MAX */		i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGEQLF", " ", m, n, &c_n1, &			c_n1);		nbmin = max(i__1,i__2);	    }	}    }    if (nb >= nbmin && nb < k && nx < k) {/*        Use blocked code initially. *//*        The last kk columns are handled by the block method. */	ki = (k - nx - 1) / nb * nb;/* Computing MIN */	i__1 = k, i__2 = ki + nb;	kk = min(i__1,i__2);	i__1 = k - kk + 1;	i__2 = -nb;	for (i__ = k - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ 		+= i__2) {/* Computing MIN */	    i__3 = k - i__ + 1;	    ib = min(i__3,nb);/*           Compute the QL factorization of the current block *//*           A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1) */	    i__3 = *m - k + i__ + ib - 1;	    _starpu_dgeql2_(&i__3, &ib, &a[(*n - k + i__) * a_dim1 + 1], lda, &tau[		    i__], &work[1], &iinfo);	    if (*n - k + i__ > 1) {/*              Form the triangular factor of the block reflector *//*              H = H(i+ib-1) . . . H(i+1) H(i) */		i__3 = *m - k + i__ + ib - 1;		_starpu_dlarft_("Backward", "Columnwise", &i__3, &ib, &a[(*n - k + 			i__) * a_dim1 + 1], lda, &tau[i__], &work[1], &ldwork);/*              Apply H' to A(1:m-k+i+ib-1,1:n-k+i-1) from the left */		i__3 = *m - k + i__ + ib - 1;		i__4 = *n - k + i__ - 1;		_starpu_dlarfb_("Left", "Transpose", "Backward", "Columnwise", &i__3, 			&i__4, &ib, &a[(*n - k + i__) * a_dim1 + 1], lda, &			work[1], &ldwork, &a[a_offset], lda, &work[ib + 1], &			ldwork);	    }/* L10: */	}	mu = *m - k + i__ + nb - 1;	nu = *n - k + i__ + nb - 1;    } else {	mu = *m;	nu = *n;    }/*     Use unblocked code to factor the last or only block */    if (mu > 0 && nu > 0) {	_starpu_dgeql2_(&mu, &nu, &a[a_offset], lda, &tau[1], &work[1], &iinfo);    }    work[1] = (doublereal) iws;    return 0;/*     End of DGEQLF */} /* _starpu_dgeqlf_ */
 |