| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 | /* dgehd2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dgehd2_(integer *n, integer *ilo, integer *ihi, 	doublereal *a, integer *lda, doublereal *tau, doublereal *work, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    /* Local variables */    integer i__;    doublereal aii;    extern /* Subroutine */ int _starpu_dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *), _starpu_dlarfg_(integer *, doublereal *, 	    doublereal *, integer *, doublereal *), _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEHD2 reduces a real general matrix A to upper Hessenberg form H by *//*  an orthogonal similarity transformation:  Q' * A * Q = H . *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  ILO     (input) INTEGER *//*  IHI     (input) INTEGER *//*          It is assumed that A is already upper triangular in rows *//*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally *//*          set by a previous call to DGEBAL; otherwise they should be *//*          set to 1 and N respectively. See Further Details. *//*          1 <= ILO <= IHI <= max(1,N). *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the n by n general matrix to be reduced. *//*          On exit, the upper triangle and the first subdiagonal of A *//*          are overwritten with the upper Hessenberg matrix H, and the *//*          elements below the first subdiagonal, with the array TAU, *//*          represent the orthogonal matrix Q as a product of elementary *//*          reflectors. See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) *//*          The scalar factors of the elementary reflectors (see Further *//*          Details). *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of (ihi-ilo) elementary *//*  reflectors *//*     Q = H(ilo) H(ilo+1) . . . H(ihi-1). *//*  Each H(i) has the form *//*     H(i) = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on *//*  exit in A(i+2:ihi,i), and tau in TAU(i). *//*  The contents of A are illustrated by the following example, with *//*  n = 7, ilo = 2 and ihi = 6: *//*  on entry,                        on exit, *//*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a ) *//*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a ) *//*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h ) *//*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h ) *//*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h ) *//*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h ) *//*  (                         a )    (                          a ) *//*  where a denotes an element of the original matrix A, h denotes a *//*  modified element of the upper Hessenberg matrix H, and vi denotes an *//*  element of the vector defining H(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    --work;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*ilo < 1 || *ilo > max(1,*n)) {	*info = -2;    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGEHD2", &i__1);	return 0;    }    i__1 = *ihi - 1;    for (i__ = *ilo; i__ <= i__1; ++i__) {/*        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */	i__2 = *ihi - i__;/* Computing MIN */	i__3 = i__ + 2;	_starpu_dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ i__ * 		a_dim1], &c__1, &tau[i__]);	aii = a[i__ + 1 + i__ * a_dim1];	a[i__ + 1 + i__ * a_dim1] = 1.;/*        Apply H(i) to A(1:ihi,i+1:ihi) from the right */	i__2 = *ihi - i__;	_starpu_dlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[		i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);/*        Apply H(i) to A(i+1:ihi,i+1:n) from the left */	i__2 = *ihi - i__;	i__3 = *n - i__;	_starpu_dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[		i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);	a[i__ + 1 + i__ * a_dim1] = aii;/* L10: */    }    return 0;/*     End of DGEHD2 */} /* _starpu_dgehd2_ */
 |