| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549 | /* dgegs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b36 = 0.;static doublereal c_b37 = 1.;/* Subroutine */ int _starpu_dgegs_(char *jobvsl, char *jobvsr, integer *n, 	doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *	alphar, doublereal *alphai, doublereal *beta, doublereal *vsl, 	integer *ldvsl, doublereal *vsr, integer *ldvsr, doublereal *work, 	integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, 	    vsr_dim1, vsr_offset, i__1, i__2;    /* Local variables */    integer nb, nb1, nb2, nb3, ihi, ilo;    doublereal eps, anrm, bnrm;    integer itau, lopt;    extern logical _starpu_lsame_(char *, char *);    integer ileft, iinfo, icols;    logical ilvsl;    integer iwork;    logical ilvsr;    integer irows;    extern /* Subroutine */ int _starpu_dggbak_(char *, char *, integer *, integer *, 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 	    integer *, integer *), _starpu_dggbal_(char *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal 	    *, doublereal *, integer *, integer *, doublereal *, integer *, 	    integer *);    logical ilascl, ilbscl;    extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), 	    _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *);    doublereal safmin;    extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    doublereal bignum;    extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *, 	    integer *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *);    integer ijobvl, iright, ijobvr;    extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    integer *);    doublereal anrmto;    integer lwkmin;    doublereal bnrmto;    extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    doublereal smlnum;    integer lwkopt;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This routine is deprecated and has been replaced by routine DGGES. *//*  DGEGS computes the eigenvalues, real Schur form, and, optionally, *//*  left and or/right Schur vectors of a real matrix pair (A,B). *//*  Given two square matrices A and B, the generalized real Schur *//*  factorization has the form *//*    A = Q*S*Z**T,  B = Q*T*Z**T *//*  where Q and Z are orthogonal matrices, T is upper triangular, and S *//*  is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal *//*  blocks, the 2-by-2 blocks corresponding to complex conjugate pairs *//*  of eigenvalues of (A,B).  The columns of Q are the left Schur vectors *//*  and the columns of Z are the right Schur vectors. *//*  If only the eigenvalues of (A,B) are needed, the driver routine *//*  DGEGV should be used instead.  See DGEGV for a description of the *//*  eigenvalues of the generalized nonsymmetric eigenvalue problem *//*  (GNEP). *//*  Arguments *//*  ========= *//*  JOBVSL  (input) CHARACTER*1 *//*          = 'N':  do not compute the left Schur vectors; *//*          = 'V':  compute the left Schur vectors (returned in VSL). *//*  JOBVSR  (input) CHARACTER*1 *//*          = 'N':  do not compute the right Schur vectors; *//*          = 'V':  compute the right Schur vectors (returned in VSR). *//*  N       (input) INTEGER *//*          The order of the matrices A, B, VSL, and VSR.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) *//*          On entry, the matrix A. *//*          On exit, the upper quasi-triangular matrix S from the *//*          generalized real Schur factorization. *//*  LDA     (input) INTEGER *//*          The leading dimension of A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) *//*          On entry, the matrix B. *//*          On exit, the upper triangular matrix T from the generalized *//*          real Schur factorization. *//*  LDB     (input) INTEGER *//*          The leading dimension of B.  LDB >= max(1,N). *//*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N) *//*          The real parts of each scalar alpha defining an eigenvalue *//*          of GNEP. *//*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N) *//*          The imaginary parts of each scalar alpha defining an *//*          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th *//*          eigenvalue is real; if positive, then the j-th and (j+1)-st *//*          eigenvalues are a complex conjugate pair, with *//*          ALPHAI(j+1) = -ALPHAI(j). *//*  BETA    (output) DOUBLE PRECISION array, dimension (N) *//*          The scalars beta that define the eigenvalues of GNEP. *//*          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and *//*          beta = BETA(j) represent the j-th eigenvalue of the matrix *//*          pair (A,B), in one of the forms lambda = alpha/beta or *//*          mu = beta/alpha.  Since either lambda or mu may overflow, *//*          they should not, in general, be computed. *//*  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N) *//*          If JOBVSL = 'V', the matrix of left Schur vectors Q. *//*          Not referenced if JOBVSL = 'N'. *//*  LDVSL   (input) INTEGER *//*          The leading dimension of the matrix VSL. LDVSL >=1, and *//*          if JOBVSL = 'V', LDVSL >= N. *//*  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N) *//*          If JOBVSR = 'V', the matrix of right Schur vectors Z. *//*          Not referenced if JOBVSR = 'N'. *//*  LDVSR   (input) INTEGER *//*          The leading dimension of the matrix VSR. LDVSR >= 1, and *//*          if JOBVSR = 'V', LDVSR >= N. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK.  LWORK >= max(1,4*N). *//*          For good performance, LWORK must generally be larger. *//*          To compute the optimal value of LWORK, call ILAENV to get *//*          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute: *//*          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR *//*          The optimal LWORK is  2*N + N*(NB+1). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          = 1,...,N: *//*                The QZ iteration failed.  (A,B) are not in Schur *//*                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should *//*                be correct for j=INFO+1,...,N. *//*          > N:  errors that usually indicate LAPACK problems: *//*                =N+1: error return from DGGBAL *//*                =N+2: error return from DGEQRF *//*                =N+3: error return from DORMQR *//*                =N+4: error return from DORGQR *//*                =N+5: error return from DGGHRD *//*                =N+6: error return from DHGEQZ (other than failed *//*                                                iteration) *//*                =N+7: error return from DGGBAK (computing VSL) *//*                =N+8: error return from DGGBAK (computing VSR) *//*                =N+9: error return from DLASCL (various places) *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --alphar;    --alphai;    --beta;    vsl_dim1 = *ldvsl;    vsl_offset = 1 + vsl_dim1;    vsl -= vsl_offset;    vsr_dim1 = *ldvsr;    vsr_offset = 1 + vsr_dim1;    vsr -= vsr_offset;    --work;    /* Function Body */    if (_starpu_lsame_(jobvsl, "N")) {	ijobvl = 1;	ilvsl = FALSE_;    } else if (_starpu_lsame_(jobvsl, "V")) {	ijobvl = 2;	ilvsl = TRUE_;    } else {	ijobvl = -1;	ilvsl = FALSE_;    }    if (_starpu_lsame_(jobvsr, "N")) {	ijobvr = 1;	ilvsr = FALSE_;    } else if (_starpu_lsame_(jobvsr, "V")) {	ijobvr = 2;	ilvsr = TRUE_;    } else {	ijobvr = -1;	ilvsr = FALSE_;    }/*     Test the input arguments *//* Computing MAX */    i__1 = *n << 2;    lwkmin = max(i__1,1);    lwkopt = lwkmin;    work[1] = (doublereal) lwkopt;    lquery = *lwork == -1;    *info = 0;    if (ijobvl <= 0) {	*info = -1;    } else if (ijobvr <= 0) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -7;    } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {	*info = -12;    } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {	*info = -14;    } else if (*lwork < lwkmin && ! lquery) {	*info = -16;    }    if (*info == 0) {	nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1);	nb2 = _starpu_ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1);	nb3 = _starpu_ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1);/* Computing MAX */	i__1 = max(nb1,nb2);	nb = max(i__1,nb3);	lopt = (*n << 1) + *n * (nb + 1);	work[1] = (doublereal) lopt;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGEGS ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Get machine constants */    eps = _starpu_dlamch_("E") * _starpu_dlamch_("B");    safmin = _starpu_dlamch_("S");    smlnum = *n * safmin / eps;    bignum = 1. / smlnum;/*     Scale A if max element outside range [SMLNUM,BIGNUM] */    anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);    ilascl = FALSE_;    if (anrm > 0. && anrm < smlnum) {	anrmto = smlnum;	ilascl = TRUE_;    } else if (anrm > bignum) {	anrmto = bignum;	ilascl = TRUE_;    }    if (ilascl) {	_starpu_dlascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &		iinfo);	if (iinfo != 0) {	    *info = *n + 9;	    return 0;	}    }/*     Scale B if max element outside range [SMLNUM,BIGNUM] */    bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);    ilbscl = FALSE_;    if (bnrm > 0. && bnrm < smlnum) {	bnrmto = smlnum;	ilbscl = TRUE_;    } else if (bnrm > bignum) {	bnrmto = bignum;	ilbscl = TRUE_;    }    if (ilbscl) {	_starpu_dlascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &		iinfo);	if (iinfo != 0) {	    *info = *n + 9;	    return 0;	}    }/*     Permute the matrix to make it more nearly triangular *//*     Workspace layout:  (2*N words -- "work..." not actually used) *//*        left_permutation, right_permutation, work... */    ileft = 1;    iright = *n + 1;    iwork = iright + *n;    _starpu_dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[	    ileft], &work[iright], &work[iwork], &iinfo);    if (iinfo != 0) {	*info = *n + 1;	goto L10;    }/*     Reduce B to triangular form, and initialize VSL and/or VSR *//*     Workspace layout:  ("work..." must have at least N words) *//*        left_permutation, right_permutation, tau, work... */    irows = ihi + 1 - ilo;    icols = *n + 1 - ilo;    itau = iwork;    iwork = itau + irows;    i__1 = *lwork + 1 - iwork;    _starpu_dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[	    iwork], &i__1, &iinfo);    if (iinfo >= 0) {/* Computing MAX */	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	lwkopt = max(i__1,i__2);    }    if (iinfo != 0) {	*info = *n + 2;	goto L10;    }    i__1 = *lwork + 1 - iwork;    _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &	    iinfo);    if (iinfo >= 0) {/* Computing MAX */	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	lwkopt = max(i__1,i__2);    }    if (iinfo != 0) {	*info = *n + 3;	goto L10;    }    if (ilvsl) {	_starpu_dlaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);	i__1 = irows - 1;	i__2 = irows - 1;	_starpu_dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo 		+ 1 + ilo * vsl_dim1], ldvsl);	i__1 = *lwork + 1 - iwork;	_starpu_dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &		work[itau], &work[iwork], &i__1, &iinfo);	if (iinfo >= 0) {/* Computing MAX */	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	    lwkopt = max(i__1,i__2);	}	if (iinfo != 0) {	    *info = *n + 4;	    goto L10;	}    }    if (ilvsr) {	_starpu_dlaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);    }/*     Reduce to generalized Hessenberg form */    _starpu_dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 	    ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);    if (iinfo != 0) {	*info = *n + 5;	goto L10;    }/*     Perform QZ algorithm, computing Schur vectors if desired *//*     Workspace layout:  ("work..." must have at least 1 word) *//*        left_permutation, right_permutation, work... */    iwork = itau;    i__1 = *lwork + 1 - iwork;    _starpu_dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo);    if (iinfo >= 0) {/* Computing MAX */	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;	lwkopt = max(i__1,i__2);    }    if (iinfo != 0) {	if (iinfo > 0 && iinfo <= *n) {	    *info = iinfo;	} else if (iinfo > *n && iinfo <= *n << 1) {	    *info = iinfo - *n;	} else {	    *info = *n + 6;	}	goto L10;    }/*     Apply permutation to VSL and VSR */    if (ilvsl) {	_starpu_dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[		vsl_offset], ldvsl, &iinfo);	if (iinfo != 0) {	    *info = *n + 7;	    goto L10;	}    }    if (ilvsr) {	_starpu_dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[		vsr_offset], ldvsr, &iinfo);	if (iinfo != 0) {	    *info = *n + 8;	    goto L10;	}    }/*     Undo scaling */    if (ilascl) {	_starpu_dlascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &		iinfo);	if (iinfo != 0) {	    *info = *n + 9;	    return 0;	}	_starpu_dlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, &		iinfo);	if (iinfo != 0) {	    *info = *n + 9;	    return 0;	}	_starpu_dlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, &		iinfo);	if (iinfo != 0) {	    *info = *n + 9;	    return 0;	}    }    if (ilbscl) {	_starpu_dlascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &		iinfo);	if (iinfo != 0) {	    *info = *n + 9;	    return 0;	}	_starpu_dlascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &		iinfo);	if (iinfo != 0) {	    *info = *n + 9;	    return 0;	}    }L10:    work[1] = (doublereal) lwkopt;    return 0;/*     End of DGEGS */} /* _starpu_dgegs_ */
 |