| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 | /* dgeequb.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dgeequb_(integer *m, integer *n, doublereal *a, integer *	lda, doublereal *r__, doublereal *c__, doublereal *rowcnd, doublereal 	*colcnd, doublereal *amax, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2;    doublereal d__1, d__2, d__3;    /* Builtin functions */    double log(doublereal), pow_di(doublereal *, integer *);    /* Local variables */    integer i__, j;    doublereal radix, rcmin, rcmax;    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal bignum, logrdx, smlnum;/*     -- LAPACK routine (version 3.2)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- November 2008                                                -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEEQUB computes row and column scalings intended to equilibrate an *//*  M-by-N matrix A and reduce its condition number.  R returns the row *//*  scale factors and C the column scale factors, chosen to try to make *//*  the largest element in each row and column of the matrix B with *//*  elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most *//*  the radix. *//*  R(i) and C(j) are restricted to be a power of the radix between *//*  SMLNUM = smallest safe number and BIGNUM = largest safe number.  Use *//*  of these scaling factors is not guaranteed to reduce the condition *//*  number of A but works well in practice. *//*  This routine differs from DGEEQU by restricting the scaling factors *//*  to a power of the radix.  Baring over- and underflow, scaling by *//*  these factors introduces no additional rounding errors.  However, the *//*  scaled entries' magnitured are no longer approximately 1 but lie *//*  between sqrt(radix) and 1/sqrt(radix). *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The M-by-N matrix whose equilibration factors are *//*          to be computed. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  R       (output) DOUBLE PRECISION array, dimension (M) *//*          If INFO = 0 or INFO > M, R contains the row scale factors *//*          for A. *//*  C       (output) DOUBLE PRECISION array, dimension (N) *//*          If INFO = 0,  C contains the column scale factors for A. *//*  ROWCND  (output) DOUBLE PRECISION *//*          If INFO = 0 or INFO > M, ROWCND contains the ratio of the *//*          smallest R(i) to the largest R(i).  If ROWCND >= 0.1 and *//*          AMAX is neither too large nor too small, it is not worth *//*          scaling by R. *//*  COLCND  (output) DOUBLE PRECISION *//*          If INFO = 0, COLCND contains the ratio of the smallest *//*          C(i) to the largest C(i).  If COLCND >= 0.1, it is not *//*          worth scaling by C. *//*  AMAX    (output) DOUBLE PRECISION *//*          Absolute value of largest matrix element.  If AMAX is very *//*          close to overflow or very close to underflow, the matrix *//*          should be scaled. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i,  and i is *//*                <= M:  the i-th row of A is exactly zero *//*                >  M:  the (i-M)-th column of A is exactly zero *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --r__;    --c__;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGEEQUB", &i__1);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0) {	*rowcnd = 1.;	*colcnd = 1.;	*amax = 0.;	return 0;    }/*     Get machine constants.  Assume SMLNUM is a power of the radix. */    smlnum = _starpu_dlamch_("S");    bignum = 1. / smlnum;    radix = _starpu_dlamch_("B");    logrdx = log(radix);/*     Compute row scale factors. */    i__1 = *m;    for (i__ = 1; i__ <= i__1; ++i__) {	r__[i__] = 0.;/* L10: */    }/*     Find the maximum element in each row. */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *m;	for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */	    d__2 = r__[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));	    r__[i__] = max(d__2,d__3);/* L20: */	}/* L30: */    }    i__1 = *m;    for (i__ = 1; i__ <= i__1; ++i__) {	if (r__[i__] > 0.) {	    i__2 = (integer) (log(r__[i__]) / logrdx);	    r__[i__] = pow_di(&radix, &i__2);	}    }/*     Find the maximum and minimum scale factors. */    rcmin = bignum;    rcmax = 0.;    i__1 = *m;    for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MAX */	d__1 = rcmax, d__2 = r__[i__];	rcmax = max(d__1,d__2);/* Computing MIN */	d__1 = rcmin, d__2 = r__[i__];	rcmin = min(d__1,d__2);/* L40: */    }    *amax = rcmax;    if (rcmin == 0.) {/*        Find the first zero scale factor and return an error code. */	i__1 = *m;	for (i__ = 1; i__ <= i__1; ++i__) {	    if (r__[i__] == 0.) {		*info = i__;		return 0;	    }/* L50: */	}    } else {/*        Invert the scale factors. */	i__1 = *m;	for (i__ = 1; i__ <= i__1; ++i__) {/* Computing MIN *//* Computing MAX */	    d__2 = r__[i__];	    d__1 = max(d__2,smlnum);	    r__[i__] = 1. / min(d__1,bignum);/* L60: */	}/*        Compute ROWCND = min(R(I)) / max(R(I)). */	*rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);    }/*     Compute column scale factors */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	c__[j] = 0.;/* L70: */    }/*     Find the maximum element in each column, *//*     assuming the row scaling computed above. */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	i__2 = *m;	for (i__ = 1; i__ <= i__2; ++i__) {/* Computing MAX */	    d__2 = c__[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1)) * 		    r__[i__];	    c__[j] = max(d__2,d__3);/* L80: */	}	if (c__[j] > 0.) {	    i__2 = (integer) (log(c__[j]) / logrdx);	    c__[j] = pow_di(&radix, &i__2);	}/* L90: */    }/*     Find the maximum and minimum scale factors. */    rcmin = bignum;    rcmax = 0.;    i__1 = *n;    for (j = 1; j <= i__1; ++j) {/* Computing MIN */	d__1 = rcmin, d__2 = c__[j];	rcmin = min(d__1,d__2);/* Computing MAX */	d__1 = rcmax, d__2 = c__[j];	rcmax = max(d__1,d__2);/* L100: */    }    if (rcmin == 0.) {/*        Find the first zero scale factor and return an error code. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    if (c__[j] == 0.) {		*info = *m + j;		return 0;	    }/* L110: */	}    } else {/*        Invert the scale factors. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/* Computing MIN *//* Computing MAX */	    d__2 = c__[j];	    d__1 = max(d__2,smlnum);	    c__[j] = 1. / min(d__1,bignum);/* L120: */	}/*        Compute COLCND = min(C(J)) / max(C(J)). */	*colcnd = max(rcmin,smlnum) / min(rcmax,bignum);    }    return 0;/*     End of DGEEQUB */} /* _starpu_dgeequb_ */
 |