| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 | /* dgemm.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dgemm_(char *transa, char *transb, integer *m, integer *	n, integer *k, doublereal *alpha, doublereal *a, integer *lda, 	doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, 	integer *ldc){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 	    i__3;    /* Local variables */    integer i__, j, l, info;    logical nota, notb;    doublereal temp;    integer ncola;    extern logical _starpu_lsame_(char *, char *);    integer nrowa, nrowb;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGEMM  performs one of the matrix-matrix operations *//*     C := alpha*op( A )*op( B ) + beta*C, *//*  where  op( X ) is one of *//*     op( X ) = X   or   op( X ) = X', *//*  alpha and beta are scalars, and A, B and C are matrices, with op( A ) *//*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix. *//*  Arguments *//*  ========== *//*  TRANSA - CHARACTER*1. *//*           On entry, TRANSA specifies the form of op( A ) to be used in *//*           the matrix multiplication as follows: *//*              TRANSA = 'N' or 'n',  op( A ) = A. *//*              TRANSA = 'T' or 't',  op( A ) = A'. *//*              TRANSA = 'C' or 'c',  op( A ) = A'. *//*           Unchanged on exit. *//*  TRANSB - CHARACTER*1. *//*           On entry, TRANSB specifies the form of op( B ) to be used in *//*           the matrix multiplication as follows: *//*              TRANSB = 'N' or 'n',  op( B ) = B. *//*              TRANSB = 'T' or 't',  op( B ) = B'. *//*              TRANSB = 'C' or 'c',  op( B ) = B'. *//*           Unchanged on exit. *//*  M      - INTEGER. *//*           On entry,  M  specifies  the number  of rows  of the  matrix *//*           op( A )  and of the  matrix  C.  M  must  be at least  zero. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry,  N  specifies the number  of columns of the matrix *//*           op( B ) and the number of columns of the matrix C. N must be *//*           at least zero. *//*           Unchanged on exit. *//*  K      - INTEGER. *//*           On entry,  K  specifies  the number of columns of the matrix *//*           op( A ) and the number of rows of the matrix op( B ). K must *//*           be at least  zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is *//*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise. *//*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k *//*           part of the array  A  must contain the matrix  A,  otherwise *//*           the leading  k by m  part of the array  A  must contain  the *//*           matrix A. *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then *//*           LDA must be at least  max( 1, m ), otherwise  LDA must be at *//*           least  max( 1, k ). *//*           Unchanged on exit. *//*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is *//*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise. *//*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n *//*           part of the array  B  must contain the matrix  B,  otherwise *//*           the leading  n by k  part of the array  B  must contain  the *//*           matrix B. *//*           Unchanged on exit. *//*  LDB    - INTEGER. *//*           On entry, LDB specifies the first dimension of B as declared *//*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then *//*           LDB must be at least  max( 1, k ), otherwise  LDB must be at *//*           least  max( 1, n ). *//*           Unchanged on exit. *//*  BETA   - DOUBLE PRECISION. *//*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is *//*           supplied as zero then C need not be set on input. *//*           Unchanged on exit. *//*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ). *//*           Before entry, the leading  m by n  part of the array  C must *//*           contain the matrix  C,  except when  beta  is zero, in which *//*           case C need not be set on entry. *//*           On exit, the array  C  is overwritten by the  m by n  matrix *//*           ( alpha*op( A )*op( B ) + beta*C ). *//*  LDC    - INTEGER. *//*           On entry, LDC specifies the first dimension of C as declared *//*           in  the  calling  (sub)  program.   LDC  must  be  at  least *//*           max( 1, m ). *//*           Unchanged on exit. *//*  Level 3 Blas routine. *//*  -- Written on 8-February-1989. *//*     Jack Dongarra, Argonne National Laboratory. *//*     Iain Duff, AERE Harwell. *//*     Jeremy Du Croz, Numerical Algorithms Group Ltd. *//*     Sven Hammarling, Numerical Algorithms Group Ltd. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Parameters .. *//*     .. *//*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not *//*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows *//*     and  columns of  A  and the  number of  rows  of  B  respectively. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    /* Function Body */    nota = _starpu_lsame_(transa, "N");    notb = _starpu_lsame_(transb, "N");    if (nota) {	nrowa = *m;	ncola = *k;    } else {	nrowa = *k;	ncola = *m;    }    if (notb) {	nrowb = *k;    } else {	nrowb = *n;    }/*     Test the input parameters. */    info = 0;    if (! nota && ! _starpu_lsame_(transa, "C") && ! _starpu_lsame_(	    transa, "T")) {	info = 1;    } else if (! notb && ! _starpu_lsame_(transb, "C") && ! 	    _starpu_lsame_(transb, "T")) {	info = 2;    } else if (*m < 0) {	info = 3;    } else if (*n < 0) {	info = 4;    } else if (*k < 0) {	info = 5;    } else if (*lda < max(1,nrowa)) {	info = 8;    } else if (*ldb < max(1,nrowb)) {	info = 10;    } else if (*ldc < max(1,*m)) {	info = 13;    }    if (info != 0) {	_starpu_xerbla_("DGEMM ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {	return 0;    }/*     And if  alpha.eq.zero. */    if (*alpha == 0.) {	if (*beta == 0.) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    c__[i__ + j * c_dim1] = 0.;/* L10: */		}/* L20: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L30: */		}/* L40: */	    }	}	return 0;    }/*     Start the operations. */    if (notb) {	if (nota) {/*           Form  C := alpha*A*B + beta*C. */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (*beta == 0.) {		    i__2 = *m;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = 0.;/* L50: */		    }		} else if (*beta != 1.) {		    i__2 = *m;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L60: */		    }		}		i__2 = *k;		for (l = 1; l <= i__2; ++l) {		    if (b[l + j * b_dim1] != 0.) {			temp = *alpha * b[l + j * b_dim1];			i__3 = *m;			for (i__ = 1; i__ <= i__3; ++i__) {			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 				    a_dim1];/* L70: */			}		    }/* L80: */		}/* L90: */	    }	} else {/*           Form  C := alpha*A'*B + beta*C */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    temp = 0.;		    i__3 = *k;		    for (l = 1; l <= i__3; ++l) {			temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];/* L100: */		    }		    if (*beta == 0.) {			c__[i__ + j * c_dim1] = *alpha * temp;		    } else {			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[				i__ + j * c_dim1];		    }/* L110: */		}/* L120: */	    }	}    } else {	if (nota) {/*           Form  C := alpha*A*B' + beta*C */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		if (*beta == 0.) {		    i__2 = *m;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = 0.;/* L130: */		    }		} else if (*beta != 1.) {		    i__2 = *m;		    for (i__ = 1; i__ <= i__2; ++i__) {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L140: */		    }		}		i__2 = *k;		for (l = 1; l <= i__2; ++l) {		    if (b[j + l * b_dim1] != 0.) {			temp = *alpha * b[j + l * b_dim1];			i__3 = *m;			for (i__ = 1; i__ <= i__3; ++i__) {			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 				    a_dim1];/* L150: */			}		    }/* L160: */		}/* L170: */	    }	} else {/*           Form  C := alpha*A'*B' + beta*C */	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    temp = 0.;		    i__3 = *k;		    for (l = 1; l <= i__3; ++l) {			temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];/* L180: */		    }		    if (*beta == 0.) {			c__[i__ + j * c_dim1] = *alpha * temp;		    } else {			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[				i__ + j * c_dim1];		    }/* L190: */		}/* L200: */	    }	}    }    return 0;/*     End of DGEMM . */} /* _starpu_dgemm_ */
 |