123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2010 Université de Bordeaux 1
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- #include "cg.h"
- #include <math.h>
- #if 0
- static void print_vector_from_descr(unsigned nx, TYPE *v)
- {
- unsigned i;
- for (i = 0; i < nx; i++)
- {
- fprintf(stderr, "%2.2e ", v[i]);
- }
- fprintf(stderr, "\n");
- }
- static void print_matrix_from_descr(unsigned nx, unsigned ny, unsigned ld, TYPE *mat)
- {
- unsigned i, j;
- for (j = 0; j < nx; j++)
- {
- for (i = 0; i < ny; i++)
- {
- fprintf(stderr, "%2.2e ", mat[j+i*ld]);
- }
- fprintf(stderr, "\n");
- }
- }
- #endif
- /*
- * Reduction accumulation methods
- */
- #ifdef STARPU_USE_CUDA
- static void accumulate_variable_cuda(void *descr[], void *cl_arg)
- {
- TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
-
- cublasaxpy(1, (TYPE)1.0, v_src, 1, v_dst, 1);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void accumulate_variable_cpu(void *descr[], void *cl_arg)
- {
- TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
-
- *v_dst = *v_dst + *v_src;
- }
- static struct starpu_perfmodel_t accumulate_variable_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "accumulate_variable"
- };
- starpu_codelet accumulate_variable_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = accumulate_variable_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = accumulate_variable_cuda,
- #endif
- .nbuffers = 2,
- .model = &accumulate_variable_model
- };
- #ifdef STARPU_USE_CUDA
- static void accumulate_vector_cuda(void *descr[], void *cl_arg)
- {
- TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
-
- cublasaxpy(n, (TYPE)1.0, v_src, 1, v_dst, 1);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void accumulate_vector_cpu(void *descr[], void *cl_arg)
- {
- TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
-
- AXPY(n, (TYPE)1.0, v_src, 1, v_dst, 1);
- }
- static struct starpu_perfmodel_t accumulate_vector_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "accumulate_vector"
- };
- starpu_codelet accumulate_vector_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = accumulate_vector_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = accumulate_vector_cuda,
- #endif
- .nbuffers = 2,
- .model = &accumulate_vector_model
- };
- /*
- * Reduction initialization methods
- */
- #ifdef STARPU_USE_CUDA
- extern void zero_vector(TYPE *x, unsigned nelems);
- static void bzero_variable_cuda(void *descr[], void *cl_arg)
- {
- TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- zero_vector(v, 1);
-
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void bzero_variable_cpu(void *descr[], void *cl_arg)
- {
- TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- *v = (TYPE)0.0;
- }
- static struct starpu_perfmodel_t bzero_variable_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "bzero_variable"
- };
- starpu_codelet bzero_variable_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = bzero_variable_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = bzero_variable_cuda,
- #endif
- .nbuffers = 1,
- .model = &bzero_variable_model
- };
- #ifdef STARPU_USE_CUDA
- static void bzero_vector_cuda(void *descr[], void *cl_arg)
- {
- TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
-
- zero_vector(v, n);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void bzero_vector_cpu(void *descr[], void *cl_arg)
- {
- TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
-
- memset(v, 0, n*sizeof(TYPE));
- }
- static struct starpu_perfmodel_t bzero_vector_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "bzero_vector"
- };
- starpu_codelet bzero_vector_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = bzero_vector_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = bzero_vector_cuda,
- #endif
- .nbuffers = 1,
- .model = &bzero_vector_model
- };
- /*
- * DOT kernel : s = dot(v1, v2)
- */
- #ifdef STARPU_USE_CUDA
- extern void dot_host(TYPE *x, TYPE *y, unsigned nelems, TYPE *dot);
- static void dot_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
- /* Contrary to cublasSdot, this function puts its result directly in
- * device memory, so that we don't have to transfer that value back and
- * forth. */
- dot_host(v1, v2, n, dot);
- }
- #endif
- static void dot_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
- TYPE local_dot = 0.0;
- /* Note that we explicitely cast the result of the DOT kernel because
- * some BLAS library will return a double for sdot for instance. */
- local_dot = (TYPE)DOT(n, v1, 1, v2, 1);
- *dot = *dot + local_dot;
- }
- static struct starpu_perfmodel_t dot_kernel_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "dot_kernel"
- };
- static starpu_codelet dot_kernel_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = dot_kernel_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = dot_kernel_cuda,
- #endif
- .nbuffers = 3,
- .model = &dot_kernel_model
- };
- void dot_kernel(starpu_data_handle v1,
- starpu_data_handle v2,
- starpu_data_handle s,
- unsigned nblocks,
- int use_reduction)
- {
- /* Blank the accumulation variable */
- starpu_insert_task(&bzero_variable_cl, STARPU_W, s, 0);
- unsigned b;
- for (b = 0; b < nblocks; b++)
- {
- starpu_insert_task(&dot_kernel_cl,
- use_reduction?STARPU_REDUX:STARPU_RW, s,
- STARPU_R, starpu_data_get_sub_data(v1, 1, b),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b),
- 0);
- }
- }
- /*
- * SCAL kernel : v1 = p1 v1
- */
- #ifdef STARPU_USE_CUDA
- static void scal_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE p1;
- starpu_unpack_cl_args(cl_arg, &p1);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
-
- /* v1 = p1 v1 */
- TYPE alpha = p1;
- cublasscal(n, alpha, v1, 1);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void scal_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE alpha;
- starpu_unpack_cl_args(cl_arg, &alpha);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
- /* v1 = alpha v1 */
- SCAL(n, alpha, v1, 1);
- }
- static struct starpu_perfmodel_t scal_kernel_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "scal_kernel"
- };
- static starpu_codelet scal_kernel_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = scal_kernel_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = scal_kernel_cuda,
- #endif
- .nbuffers = 1,
- .model = &scal_kernel_model
- };
- /*
- * GEMV kernel : v1 = p1 * v1 + p2 * M v2
- */
- #ifdef STARPU_USE_CUDA
- static void gemv_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
- unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
- unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
- unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
-
- TYPE alpha, beta;
- starpu_unpack_cl_args(cl_arg, &beta, &alpha);
- /* Compute v1 = alpha M v2 + beta v1 */
- cublasgemv('N', nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void gemv_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
- TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
- unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
- unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
- unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
- TYPE alpha, beta;
- starpu_unpack_cl_args(cl_arg, &beta, &alpha);
- int worker_size = starpu_combined_worker_get_size();
- if (worker_size > 1)
- {
- /* Parallel CPU task */
- int rank = starpu_combined_worker_get_rank();
-
- int block_size = (ny + worker_size - 1)/worker_size;
- int new_nx = STARPU_MIN(nx, block_size*(rank+1)) - block_size*rank;
- nx = new_nx;
- v1 = &v1[block_size*rank];
- M = &M[block_size*rank];
- }
- /* Compute v1 = alpha M v2 + beta v1 */
- GEMV("N", nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
- }
- static struct starpu_perfmodel_t gemv_kernel_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "gemv_kernel"
- };
- static starpu_codelet gemv_kernel_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .type = STARPU_SPMD,
- .max_parallelism = INT_MAX,
- .cpu_func = gemv_kernel_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = gemv_kernel_cuda,
- #endif
- .nbuffers = 3,
- .model = &gemv_kernel_model
- };
- void gemv_kernel(starpu_data_handle v1,
- starpu_data_handle matrix,
- starpu_data_handle v2,
- TYPE p1, TYPE p2,
- unsigned nblocks,
- int use_reduction)
- {
- unsigned b1, b2;
- for (b2 = 0; b2 < nblocks; b2++)
- {
- starpu_insert_task(&scal_kernel_cl,
- STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
- STARPU_VALUE, &p1, sizeof(p1),
- 0);
- }
- for (b2 = 0; b2 < nblocks; b2++)
- {
- for (b1 = 0; b1 < nblocks; b1++)
- {
- TYPE one = 1.0;
- starpu_insert_task(&gemv_kernel_cl,
- use_reduction?STARPU_REDUX:STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
- STARPU_R, starpu_data_get_sub_data(matrix, 2, b2, b1),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b1),
- STARPU_VALUE, &one, sizeof(one),
- STARPU_VALUE, &p2, sizeof(p2),
- 0);
- }
- }
- }
- /*
- * AXPY + SCAL kernel : v1 = p1 * v1 + p2 * v2
- */
- #ifdef STARPU_USE_CUDA
- static void scal_axpy_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE p1, p2;
- starpu_unpack_cl_args(cl_arg, &p1, &p2);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
-
- /* Compute v1 = p1 * v1 + p2 * v2.
- * v1 = p1 v1
- * v1 = v1 + p2 v2
- */
- cublasscal(n, p1, v1, 1);
- cublasaxpy(n, p2, v2, 1, v1, 1);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void scal_axpy_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE p1, p2;
- starpu_unpack_cl_args(cl_arg, &p1, &p2);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
-
- /* Compute v1 = p1 * v1 + p2 * v2.
- * v1 = p1 v1
- * v1 = v1 + p2 v2
- */
- SCAL(nx, p1, v1, 1);
- AXPY(nx, p2, v2, 1, v1, 1);
- }
- static struct starpu_perfmodel_t scal_axpy_kernel_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "scal_axpy_kernel"
- };
- static starpu_codelet scal_axpy_kernel_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = scal_axpy_kernel_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = scal_axpy_kernel_cuda,
- #endif
- .nbuffers = 2,
- .model = &scal_axpy_kernel_model
- };
- void scal_axpy_kernel(starpu_data_handle v1, TYPE p1,
- starpu_data_handle v2, TYPE p2,
- unsigned nblocks)
- {
- unsigned b;
- for (b = 0; b < nblocks; b++)
- {
- starpu_insert_task(&scal_axpy_kernel_cl,
- STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b),
- STARPU_VALUE, &p1, sizeof(p1),
- STARPU_VALUE, &p2, sizeof(p2),
- 0);
- }
- }
- /*
- * AXPY kernel : v1 = v1 + p1 * v2
- */
- #ifdef STARPU_USE_CUDA
- static void axpy_kernel_cuda(void *descr[], void *cl_arg)
- {
- TYPE p1;
- starpu_unpack_cl_args(cl_arg, &p1);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
-
- /* Compute v1 = v1 + p1 * v2.
- */
- cublasaxpy(n, p1, v2, 1, v1, 1);
- cudaStreamSynchronize(starpu_cuda_get_local_stream());
- }
- #endif
- static void axpy_kernel_cpu(void *descr[], void *cl_arg)
- {
- TYPE p1;
- starpu_unpack_cl_args(cl_arg, &p1);
- TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
- unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
-
- /* Compute v1 = p1 * v1 + p2 * v2.
- */
- AXPY(nx, p1, v2, 1, v1, 1);
- }
- static struct starpu_perfmodel_t axpy_kernel_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "axpy_kernel"
- };
- static starpu_codelet axpy_kernel_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = axpy_kernel_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = axpy_kernel_cuda,
- #endif
- .nbuffers = 2,
- .model = &axpy_kernel_model
- };
- void axpy_kernel(starpu_data_handle v1,
- starpu_data_handle v2, TYPE p1,
- unsigned nblocks)
- {
- unsigned b;
- for (b = 0; b < nblocks; b++)
- {
- starpu_insert_task(&axpy_kernel_cl,
- STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
- STARPU_R, starpu_data_get_sub_data(v2, 1, b),
- STARPU_VALUE, &p1, sizeof(p1),
- 0);
- }
- }
- /*
- * COPY kernel : vector_dst <- vector_src
- */
- static void copy_handle_cpu(void *descr[], void *cl_arg)
- {
- TYPE *dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
-
- unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
- size_t elemsize = STARPU_VECTOR_GET_ELEMSIZE(descr[0]);
- memcpy(dst, src, nx*elemsize);
- }
- #ifdef STARPU_USE_CUDA
- static void copy_handle_cuda(void *descr[], void *cl_arg)
- {
- TYPE *dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
- TYPE *src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
-
- unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
- size_t elemsize = STARPU_VECTOR_GET_ELEMSIZE(descr[0]);
- cudaMemcpy(dst, src, nx*elemsize, cudaMemcpyDeviceToDevice);
- cudaThreadSynchronize();
- }
- #endif
- static struct starpu_perfmodel_t copy_handle_model = {
- .type = STARPU_HISTORY_BASED,
- .symbol = "copy_handle"
- };
- static starpu_codelet copy_handle_cl = {
- .where = STARPU_CPU|STARPU_CUDA,
- .cpu_func = copy_handle_cpu,
- #ifdef STARPU_USE_CUDA
- .cuda_func = copy_handle_cuda,
- #endif
- .nbuffers = 2,
- .model = ©_handle_model
- };
- void copy_handle(starpu_data_handle dst, starpu_data_handle src, unsigned nblocks)
- {
- unsigned b;
- for (b = 0; b < nblocks; b++)
- {
- starpu_insert_task(©_handle_cl,
- STARPU_W, starpu_data_get_sub_data(dst, 1, b),
- STARPU_R, starpu_data_get_sub_data(src, 1, b),
- 0);
- }
- }
|