profiling.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2013 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <starpu.h>
  18. #include <starpu_profiling.h>
  19. #include <profiling/profiling.h>
  20. #include <core/workers.h>
  21. #include <common/config.h>
  22. #include <common/utils.h>
  23. #include <common/timing.h>
  24. #include <common/fxt.h>
  25. #include <errno.h>
  26. static struct starpu_profiling_worker_info worker_info[STARPU_NMAXWORKERS];
  27. static starpu_pthread_mutex_t worker_info_mutex[STARPU_NMAXWORKERS];
  28. /* In case the worker is still sleeping when the user request profiling info,
  29. * we need to account for the time elasped while sleeping. */
  30. static unsigned worker_registered_sleeping_start[STARPU_NMAXWORKERS];
  31. static struct timespec sleeping_start_date[STARPU_NMAXWORKERS];
  32. static unsigned worker_registered_executing_start[STARPU_NMAXWORKERS];
  33. static struct timespec executing_start_date[STARPU_NMAXWORKERS];
  34. /* Store the busid of the different (src, dst) pairs. busid_matrix[src][dst]
  35. * contains the busid of (src, dst) or -1 if the bus was not registered. */
  36. struct node_pair
  37. {
  38. int src;
  39. int dst;
  40. struct starpu_profiling_bus_info *bus_info;
  41. };
  42. static int busid_matrix[STARPU_MAXNODES][STARPU_MAXNODES];
  43. static struct starpu_profiling_bus_info bus_profiling_info[STARPU_MAXNODES][STARPU_MAXNODES];
  44. static struct node_pair busid_to_node_pair[STARPU_MAXNODES*STARPU_MAXNODES];
  45. static unsigned busid_cnt = 0;
  46. static void _starpu_bus_reset_profiling_info(struct starpu_profiling_bus_info *bus_info);
  47. /*
  48. * Global control of profiling
  49. */
  50. /* Disabled by default, unless simulating */
  51. int _starpu_profiling =
  52. #ifdef STARPU_SIMGRID
  53. 1
  54. #else
  55. 0
  56. #endif
  57. ;
  58. void starpu_profiling_init()
  59. {
  60. _starpu_profiling_init();
  61. }
  62. void _starpu_profiling_reset_counters()
  63. {
  64. int worker;
  65. for (worker = 0; worker < STARPU_NMAXWORKERS; worker++)
  66. {
  67. _starpu_worker_reset_profiling_info(worker);
  68. }
  69. int busid;
  70. int bus_cnt = starpu_bus_get_count();
  71. for (busid = 0; busid < bus_cnt; busid++)
  72. {
  73. struct starpu_profiling_bus_info *bus_info;
  74. bus_info = busid_to_node_pair[busid].bus_info;
  75. _starpu_bus_reset_profiling_info(bus_info);
  76. }
  77. }
  78. int starpu_profiling_status_set(int status)
  79. {
  80. ANNOTATE_HAPPENS_AFTER(&_starpu_profiling);
  81. int prev_value = _starpu_profiling;
  82. _starpu_profiling = status;
  83. ANNOTATE_HAPPENS_BEFORE(&_starpu_profiling);
  84. _STARPU_TRACE_SET_PROFILING(status);
  85. /* If we enable profiling, we reset the counters. */
  86. if (status == STARPU_PROFILING_ENABLE)
  87. {
  88. _starpu_profiling_reset_counters();
  89. }
  90. return prev_value;
  91. }
  92. void _starpu_profiling_init(void)
  93. {
  94. const char *env;
  95. int worker;
  96. for (worker = 0; worker < STARPU_NMAXWORKERS; worker++)
  97. {
  98. STARPU_PTHREAD_MUTEX_INIT(&worker_info_mutex[worker], NULL);
  99. }
  100. _starpu_profiling_reset_counters();
  101. if ((env = getenv("STARPU_PROFILING")) && atoi(env))
  102. {
  103. ANNOTATE_HAPPENS_AFTER(&_starpu_profiling);
  104. _starpu_profiling = STARPU_PROFILING_ENABLE;
  105. ANNOTATE_HAPPENS_BEFORE(&_starpu_profiling);
  106. }
  107. }
  108. void _starpu_profiling_terminate(void)
  109. {
  110. }
  111. /*
  112. * Task profiling
  113. */
  114. struct starpu_profiling_task_info *_starpu_allocate_profiling_info_if_needed(struct starpu_task *task)
  115. {
  116. struct starpu_profiling_task_info *info = NULL;
  117. /* If we are benchmarking, we need room for the power consumption */
  118. if (starpu_profiling_status_get() || (task->cl && task->cl->power_model && (task->cl->power_model->benchmarking || _starpu_get_calibrate_flag())))
  119. {
  120. info = (struct starpu_profiling_task_info *) calloc(1, sizeof(struct starpu_profiling_task_info));
  121. STARPU_ASSERT(info);
  122. }
  123. return info;
  124. }
  125. /*
  126. * Worker profiling
  127. */
  128. static void _starpu_worker_reset_profiling_info_with_lock(int workerid)
  129. {
  130. _starpu_clock_gettime(&worker_info[workerid].start_time);
  131. /* This is computed in a lazy fashion when the application queries
  132. * profiling info. */
  133. starpu_timespec_clear(&worker_info[workerid].total_time);
  134. starpu_timespec_clear(&worker_info[workerid].executing_time);
  135. starpu_timespec_clear(&worker_info[workerid].sleeping_time);
  136. worker_info[workerid].executed_tasks = 0;
  137. worker_info[workerid].used_cycles = 0;
  138. worker_info[workerid].stall_cycles = 0;
  139. worker_info[workerid].power_consumed = 0;
  140. /* We detect if the worker is already sleeping or doing some
  141. * computation */
  142. enum _starpu_worker_status status = _starpu_worker_get_status(workerid);
  143. if (status == STATUS_SLEEPING)
  144. {
  145. worker_registered_sleeping_start[workerid] = 1;
  146. _starpu_clock_gettime(&sleeping_start_date[workerid]);
  147. }
  148. else
  149. {
  150. worker_registered_sleeping_start[workerid] = 0;
  151. }
  152. if (status == STATUS_EXECUTING)
  153. {
  154. worker_registered_executing_start[workerid] = 1;
  155. _starpu_clock_gettime(&executing_start_date[workerid]);
  156. }
  157. else
  158. {
  159. worker_registered_executing_start[workerid] = 0;
  160. }
  161. }
  162. void _starpu_worker_reset_profiling_info(int workerid)
  163. {
  164. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  165. _starpu_worker_reset_profiling_info_with_lock(workerid);
  166. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  167. }
  168. void _starpu_worker_restart_sleeping(int workerid)
  169. {
  170. if (starpu_profiling_status_get())
  171. {
  172. struct timespec sleep_start_time;
  173. _starpu_clock_gettime(&sleep_start_time);
  174. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  175. worker_registered_sleeping_start[workerid] = 1;
  176. memcpy(&sleeping_start_date[workerid], &sleep_start_time, sizeof(struct timespec));
  177. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  178. }
  179. }
  180. void _starpu_worker_stop_sleeping(int workerid)
  181. {
  182. if (starpu_profiling_status_get())
  183. {
  184. struct timespec *sleeping_start, sleep_end_time;
  185. _starpu_clock_gettime(&sleep_end_time);
  186. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  187. sleeping_start = &sleeping_start_date[workerid];
  188. /* Perhaps that profiling was enabled while the worker was
  189. * already blocked, so we don't measure (end - start), but
  190. * (end - max(start,worker_start)) where worker_start is the
  191. * date of the previous profiling info reset on the worker */
  192. struct timespec *worker_start = &worker_info[workerid].start_time;
  193. if (starpu_timespec_cmp(sleeping_start, worker_start, <))
  194. {
  195. /* sleeping_start < worker_start */
  196. sleeping_start = worker_start;
  197. }
  198. struct timespec sleeping_time;
  199. starpu_timespec_sub(&sleep_end_time, sleeping_start, &sleeping_time);
  200. starpu_timespec_accumulate(&worker_info[workerid].sleeping_time, &sleeping_time);
  201. worker_registered_sleeping_start[workerid] = 0;
  202. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  203. }
  204. }
  205. void _starpu_worker_register_executing_start_date(int workerid, struct timespec *executing_start)
  206. {
  207. if (starpu_profiling_status_get())
  208. {
  209. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  210. worker_registered_executing_start[workerid] = 1;
  211. memcpy(&executing_start_date[workerid], executing_start, sizeof(struct timespec));
  212. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  213. }
  214. }
  215. void _starpu_worker_update_profiling_info_executing(int workerid, struct timespec *executing_time, int executed_tasks, uint64_t used_cycles, uint64_t stall_cycles, double power_consumed)
  216. {
  217. if (starpu_profiling_status_get())
  218. {
  219. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  220. if (executing_time)
  221. starpu_timespec_accumulate(&worker_info[workerid].executing_time, executing_time);
  222. worker_info[workerid].used_cycles += used_cycles;
  223. worker_info[workerid].stall_cycles += stall_cycles;
  224. worker_info[workerid].power_consumed += power_consumed;
  225. worker_info[workerid].executed_tasks += executed_tasks;
  226. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  227. }
  228. else /* Not thread safe, shouldn't be too much a problem */
  229. worker_info[workerid].executed_tasks += executed_tasks;
  230. }
  231. int starpu_profiling_worker_get_info(int workerid, struct starpu_profiling_worker_info *info)
  232. {
  233. if (!starpu_profiling_status_get())
  234. {
  235. /* Not thread safe, shouldn't be too much a problem */
  236. info->executed_tasks = worker_info[workerid].executed_tasks;
  237. }
  238. STARPU_PTHREAD_MUTEX_LOCK(&worker_info_mutex[workerid]);
  239. if (info)
  240. {
  241. /* The total time is computed in a lazy fashion */
  242. struct timespec now;
  243. _starpu_clock_gettime(&now);
  244. /* In case some worker is currently sleeping, we take into
  245. * account the time spent since it registered. */
  246. if (worker_registered_sleeping_start[workerid])
  247. {
  248. struct timespec sleeping_time;
  249. starpu_timespec_sub(&now, &sleeping_start_date[workerid], &sleeping_time);
  250. starpu_timespec_accumulate(&worker_info[workerid].sleeping_time, &sleeping_time);
  251. }
  252. if (worker_registered_executing_start[workerid])
  253. {
  254. struct timespec executing_time;
  255. starpu_timespec_sub(&now, &executing_start_date[workerid], &executing_time);
  256. starpu_timespec_accumulate(&worker_info[workerid].executing_time, &executing_time);
  257. }
  258. /* total_time = now - start_time */
  259. starpu_timespec_sub(&now, &worker_info[workerid].start_time,
  260. &worker_info[workerid].total_time);
  261. memcpy(info, &worker_info[workerid], sizeof(struct starpu_profiling_worker_info));
  262. }
  263. _starpu_worker_reset_profiling_info_with_lock(workerid);
  264. STARPU_PTHREAD_MUTEX_UNLOCK(&worker_info_mutex[workerid]);
  265. return 0;
  266. }
  267. /* When did the task reach the scheduler ? */
  268. void _starpu_profiling_set_task_push_start_time(struct starpu_task *task)
  269. {
  270. if (!starpu_profiling_status_get())
  271. return;
  272. struct starpu_profiling_task_info *profiling_info;
  273. profiling_info = task->profiling_info;
  274. if (profiling_info)
  275. _starpu_clock_gettime(&profiling_info->push_start_time);
  276. }
  277. void _starpu_profiling_set_task_push_end_time(struct starpu_task *task)
  278. {
  279. if (!starpu_profiling_status_get())
  280. return;
  281. struct starpu_profiling_task_info *profiling_info;
  282. profiling_info = task->profiling_info;
  283. if (profiling_info)
  284. _starpu_clock_gettime(&profiling_info->push_end_time);
  285. }
  286. /*
  287. * Bus profiling
  288. */
  289. void _starpu_initialize_busid_matrix(void)
  290. {
  291. int i, j;
  292. for (j = 0; j < STARPU_MAXNODES; j++)
  293. for (i = 0; i < STARPU_MAXNODES; i++)
  294. busid_matrix[i][j] = -1;
  295. busid_cnt = 0;
  296. }
  297. static void _starpu_bus_reset_profiling_info(struct starpu_profiling_bus_info *bus_info)
  298. {
  299. _starpu_clock_gettime(&bus_info->start_time);
  300. bus_info->transferred_bytes = 0;
  301. bus_info->transfer_count = 0;
  302. }
  303. int _starpu_register_bus(int src_node, int dst_node)
  304. {
  305. if (busid_matrix[src_node][dst_node] != -1)
  306. return -EBUSY;
  307. int busid = STARPU_ATOMIC_ADD(&busid_cnt, 1) - 1;
  308. busid_matrix[src_node][dst_node] = busid;
  309. busid_to_node_pair[busid].src = src_node;
  310. busid_to_node_pair[busid].dst = dst_node;
  311. busid_to_node_pair[busid].bus_info = &bus_profiling_info[src_node][dst_node];
  312. _starpu_bus_reset_profiling_info(&bus_profiling_info[src_node][dst_node]);
  313. return busid;
  314. }
  315. int starpu_bus_get_count(void)
  316. {
  317. return busid_cnt;
  318. }
  319. int starpu_bus_get_id(int src, int dst)
  320. {
  321. return busid_matrix[src][dst];
  322. }
  323. int starpu_bus_get_src(int busid)
  324. {
  325. return busid_to_node_pair[busid].src;
  326. }
  327. int starpu_bus_get_dst(int busid)
  328. {
  329. return busid_to_node_pair[busid].dst;
  330. }
  331. int starpu_bus_get_profiling_info(int busid, struct starpu_profiling_bus_info *bus_info)
  332. {
  333. int src_node = busid_to_node_pair[busid].src;
  334. int dst_node = busid_to_node_pair[busid].dst;
  335. /* XXX protect all this method with a mutex */
  336. if (bus_info)
  337. {
  338. struct timespec now;
  339. _starpu_clock_gettime(&now);
  340. /* total_time = now - start_time */
  341. starpu_timespec_sub(&now, &bus_profiling_info[src_node][dst_node].start_time,
  342. &bus_profiling_info[src_node][dst_node].total_time);
  343. memcpy(bus_info, &bus_profiling_info[src_node][dst_node], sizeof(struct starpu_profiling_bus_info));
  344. }
  345. _starpu_bus_reset_profiling_info(&bus_profiling_info[src_node][dst_node]);
  346. return 0;
  347. }
  348. void _starpu_bus_update_profiling_info(int src_node, int dst_node, size_t size)
  349. {
  350. bus_profiling_info[src_node][dst_node].transferred_bytes += size;
  351. bus_profiling_info[src_node][dst_node].transfer_count++;
  352. // fprintf(stderr, "PROFILE %d -> %d : %d (cnt %d)\n", src_node, dst_node, size, bus_profiling_info[src_node][dst_node].transfer_count);
  353. }
  354. #undef starpu_profiling_status_get
  355. int starpu_profiling_status_get(void)
  356. {
  357. int ret;
  358. ANNOTATE_HAPPENS_AFTER(&_starpu_profiling);
  359. ret = _starpu_profiling;
  360. ANNOTATE_HAPPENS_BEFORE(&_starpu_profiling);
  361. return ret;
  362. }