101_building.doxy 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2021 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*! \page BuildingAndInstallingStarPU Building and Installing StarPU
  17. \section InstallingABinaryPackage Installing a Binary Package
  18. One of the StarPU developers being a Debian Developer, the packages
  19. are well integrated and very uptodate. To see which packages are
  20. available, simply type:
  21. \verbatim
  22. $ apt-cache search starpu
  23. \endverbatim
  24. To install what you need, type for example:
  25. \verbatim
  26. $ sudo apt-get install libstarpu-1.3 libstarpu-dev
  27. \endverbatim
  28. \section InstallingFromSource Installing from Source
  29. StarPU can be built and installed by the standard means of the GNU
  30. autotools. The following chapter is intended to briefly remind how these tools
  31. can be used to install StarPU.
  32. \subsection OptionalDependencies Optional Dependencies
  33. The <c>hwloc</c> (http://www.open-mpi.org/software/hwloc) topology
  34. discovery library is not mandatory to use StarPU but strongly
  35. recommended. It allows for topology aware scheduling, which improves
  36. performance. <c>hwloc</c> is available in major free operating system
  37. distributions, and for most operating systems. Make sure to not only install
  38. a <c>hwloc</c> or <c>libhwloc</c> package, but also <c>hwloc-devel</c> or
  39. <c>libhwloc-dev</c> so as to have \c hwloc headers etc.
  40. If <c>libhwloc</c> is installed in a standard
  41. location, no option is required, it will be detected automatically,
  42. otherwise \ref with-hwloc "--with-hwloc=<directory>" should be used to specify its
  43. location.
  44. If <c>libhwloc</c> is not available on your system, the option
  45. \ref without-hwloc "--without-hwloc" should be explicitely given when calling the
  46. script <c>configure</c>.
  47. \subsection GettingSources Getting Sources
  48. StarPU's sources can be obtained from the download page of
  49. the StarPU website (https://starpu.gitlabpages.inria.fr/files/).
  50. All releases and the development tree of StarPU are freely available
  51. on StarPU SCM server under the LGPL license. Some releases are available
  52. under the BSD license.
  53. The latest release can be downloaded from the StarPU download page (https://starpu.gitlabpages.inria.fr/files/).
  54. The latest nightly snapshot can be downloaded from the StarPU website (https://starpu.gitlabpages.inria.fr/files/testing/).
  55. And finally, current development version is also accessible via git.
  56. It should only be used if you need the very latest changes (i.e. less
  57. than a day old!).
  58. \verbatim
  59. $ git clone git@gitlab.inria.fr:starpu/starpu.git
  60. \endverbatim
  61. \subsection ConfiguringStarPU Configuring StarPU
  62. Running <c>autogen.sh</c> is not necessary when using the tarball
  63. releases of StarPU. However when using the source code from the git
  64. repository, you first need to generate the script <c>configure</c> and the
  65. different Makefiles. This requires the availability of <c>autoconf</c> and
  66. <c>automake</c> >= 2.60.
  67. \verbatim
  68. $ ./autogen.sh
  69. \endverbatim
  70. You then need to configure StarPU. Details about options that are
  71. useful to give to <c>configure</c> are given in \ref CompilationConfiguration.
  72. \verbatim
  73. $ ./configure
  74. \endverbatim
  75. If <c>configure</c> does not detect some software or produces errors, please
  76. make sure to post the contents of the file <c>config.log</c> when
  77. reporting the issue.
  78. By default, the files produced during the compilation are placed in
  79. the source directory. As the compilation generates a lot of files, it
  80. is advised to put them all in a separate directory. It is then
  81. easier to cleanup, and this allows to compile several configurations
  82. out of the same source tree. To do so, simply enter the directory
  83. where you want the compilation to produce its files, and invoke the
  84. script <c>configure</c> located in the StarPU source directory.
  85. \verbatim
  86. $ mkdir build
  87. $ cd build
  88. $ ../configure
  89. \endverbatim
  90. By default, StarPU will be installed in <c>/usr/local/bin</c>,
  91. <c>/usr/local/lib</c>, etc. You can specify an installation prefix
  92. other than <c>/usr/local</c> using the option <c>--prefix</c>, for
  93. instance:
  94. \verbatim
  95. $ ../configure --prefix=$HOME/starpu
  96. \endverbatim
  97. \subsection BuildingStarPU Building StarPU
  98. \verbatim
  99. $ make
  100. \endverbatim
  101. Once everything is built, you may want to test the result. An
  102. extensive set of regression tests is provided with StarPU. Running the
  103. tests is done by calling <c>make check</c>. These tests are run every night
  104. and the result from the main profile is publicly available (https://starpu.gitlabpages/files/testing/master/).
  105. \verbatim
  106. $ make check
  107. \endverbatim
  108. \subsection InstallingStarPU Installing StarPU
  109. In order to install StarPU at the location which was specified during
  110. configuration:
  111. \verbatim
  112. $ make install
  113. \endverbatim
  114. If you have let StarPU install in <c>/usr/local/</c>, you additionally need to run
  115. \verbatim
  116. $ sudo ldconfig
  117. \endverbatim
  118. so the libraries can be found by the system.
  119. Libtool interface versioning information are included in
  120. libraries names (<c>libstarpu-1.3.so</c>, <c>libstarpumpi-1.3.so</c> and
  121. <c>libstarpufft-1.3.so</c>).
  122. \section SettingUpYourOwnCode Setting up Your Own Code
  123. \subsection SettingFlagsForCompilingLinkingAndRunningApplications Setting Flags for Compiling, Linking and Running Applications
  124. StarPU provides a <c>pkg-config</c> executable to obtain relevant compiler
  125. and linker flags. As compiling and linking an application against
  126. StarPU may require to use specific flags or libraries (for instance
  127. <c>CUDA</c> or <c>libspe2</c>).
  128. If StarPU was not installed at some standard location, the path of StarPU's
  129. library must be specified in the environment variable
  130. <c>PKG_CONFIG_PATH</c> to allow <c>pkg-config</c> to find it. For
  131. example if StarPU was installed in
  132. <c>$STARPU_PATH</c>:
  133. \verbatim
  134. $ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$STARPU_PATH/lib/pkgconfig
  135. \endverbatim
  136. The flags required to compile or link against StarPU are then
  137. accessible with the following commands:
  138. \verbatim
  139. $ pkg-config --cflags starpu-1.3 # options for the compiler
  140. $ pkg-config --libs starpu-1.3 # options for the linker
  141. \endverbatim
  142. Note that it is still possible to use the API provided in the version
  143. 1.0 of StarPU by calling <c>pkg-config</c> with the <c>starpu-1.0</c> package.
  144. Similar packages are provided for <c>starpumpi-1.0</c> and <c>starpufft-1.0</c>.
  145. It is also possible to use the API provided in the version
  146. 0.9 of StarPU by calling <c>pkg-config</c> with the <c>libstarpu</c> package.
  147. Similar packages are provided for <c>libstarpumpi</c> and <c>libstarpufft</c>.
  148. Make sure that <c>pkg-config --libs starpu-1.3</c> actually produces some output
  149. before going further: <c>PKG_CONFIG_PATH</c> has to point to the place where
  150. <c>starpu-1.3.pc</c> was installed during <c>make install</c>.
  151. Also pass the option <c>--static</c> if the application is to be
  152. linked statically.
  153. It is also necessary to set the environment variable <c>LD_LIBRARY_PATH</c> to
  154. locate dynamic libraries at runtime.
  155. \verbatim
  156. $ export LD_LIBRARY_PATH=$STARPU_PATH/lib:$LD_LIBRARY_PATH
  157. \endverbatim
  158. And it is useful to get access to the StarPU tools:
  159. \verbatim
  160. $ export PATH=$PATH:$STARPU_PATH/bin
  161. \endverbatim
  162. It is then useful to check that StarPU executes correctly and finds your hardware:
  163. \verbatim
  164. $ starpu_machine_display
  165. \endverbatim
  166. If it does not, please check the output of \c lstopo from \c hwloc and report
  167. the issue to the \c hwloc project, since this is what StarPU uses to detect the hardware.
  168. <br>
  169. A tool is provided to help setting all the environment variables
  170. needed by StarPU. Once StarPU is installed in a specific directory,
  171. calling the script <c>bin/starpu_env</c> will set in your current
  172. environment the variables <c>STARPU_PATH</c>, <c>LD_LIBRARY_PATH</c>,
  173. <c>PKG_CONFIG_PATH</c>, <c>PATH</c> and <c>MANPATH</c>.
  174. \verbatim
  175. $ source $STARPU_PATH/bin/starpu_env
  176. \endverbatim
  177. \subsection IntegratingStarPUInABuildSystem Integrating StarPU in a Build System
  178. \subsubsection StarPUInMake Integrating StarPU in a Make Build System
  179. When using a Makefile, the following lines can be added to set the
  180. options for the compiler and the linker:
  181. \verbatim
  182. CFLAGS += $$(pkg-config --cflags starpu-1.3)
  183. LDLIBS += $$(pkg-config --libs starpu-1.3)
  184. \endverbatim
  185. If you have a \c test-starpu.c file containing for instance:
  186. \code{.c}
  187. #include <starpu.h>
  188. #include <stdio.h>
  189. int main(void)
  190. {
  191. int ret;
  192. ret = starpu_init(NULL);
  193. if (ret != 0)
  194. {
  195. return 1;
  196. }
  197. printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
  198. printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
  199. printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
  200. starpu_shutdown();
  201. return 0;
  202. }
  203. \endcode
  204. You can build it with <code>make test-starpu</code> and run it with <code>./test-starpu</code>
  205. \subsubsection StarPUInCMake Integrating StarPU in a CMake Build System
  206. This section shows a minimal example integrating StarPU in an existing application's CMake build system.
  207. Let's assume we want to build an executable from the following source code using CMake:
  208. \code{.c}
  209. #include <starpu.h>
  210. #include <stdio.h>
  211. int main(void)
  212. {
  213. int ret;
  214. ret = starpu_init(NULL);
  215. if (ret != 0)
  216. {
  217. return 1;
  218. }
  219. printf("%d CPU cores\n", starpu_worker_get_count_by_type(STARPU_CPU_WORKER));
  220. printf("%d CUDA GPUs\n", starpu_worker_get_count_by_type(STARPU_CUDA_WORKER));
  221. printf("%d OpenCL GPUs\n", starpu_worker_get_count_by_type(STARPU_OPENCL_WORKER));
  222. starpu_shutdown();
  223. return 0;
  224. }
  225. \endcode
  226. The \c CMakeLists.txt file below uses the Pkg-Config support from CMake to
  227. autodetect the StarPU installation and library dependences (such as
  228. <c>libhwloc</c>) provided that the <c>PKG_CONFIG_PATH</c> variable is set, and
  229. is sufficient to build a statically-linked executable. This example has been
  230. successfully tested with CMake 3.2, though it may work with earlier CMake 3.x
  231. versions.
  232. \code{File CMakeLists.txt}
  233. cmake_minimum_required (VERSION 3.2)
  234. project (hello_starpu)
  235. find_package(PkgConfig)
  236. pkg_check_modules(STARPU REQUIRED starpu-1.3)
  237. if (STARPU_FOUND)
  238. include_directories (${STARPU_INCLUDE_DIRS})
  239. link_directories (${STARPU_STATIC_LIBRARY_DIRS})
  240. link_libraries (${STARPU_STATIC_LIBRARIES})
  241. else (STARPU_FOUND)
  242. message(FATAL_ERROR "StarPU not found")
  243. endif()
  244. add_executable(hello_starpu hello_starpu.c)
  245. \endcode
  246. The following \c CMakeLists.txt implements an alternative, more complex
  247. strategy, still relying on Pkg-Config, but also taking into account additional
  248. flags. While more complete, this approach makes CMake's build types (Debug,
  249. Release, ...) unavailable because of the direct affectation to variable
  250. <c>CMAKE_C_FLAGS</c>. If both the full flags support and the build types
  251. support are needed, the \c CMakeLists.txt below may be altered to work with
  252. <c>CMAKE_C_FLAGS_RELEASE</c>, <c>CMAKE_C_FLAGS_DEBUG</c>, and others as needed.
  253. This example has been successfully tested with CMake 3.2, though it may work
  254. with earlier CMake 3.x versions.
  255. \code{File CMakeLists.txt}
  256. cmake_minimum_required (VERSION 3.2)
  257. project (hello_starpu)
  258. find_package(PkgConfig)
  259. pkg_check_modules(STARPU REQUIRED starpu-1.3)
  260. # This section must appear before 'add_executable'
  261. if (STARPU_FOUND)
  262. # CFLAGS other than -I
  263. foreach(CFLAG ${STARPU_CFLAGS_OTHER})
  264. set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CFLAG}")
  265. endforeach()
  266. # Static LDFLAGS other than -L
  267. foreach(LDFLAG ${STARPU_STATIC_LDFLAGS_OTHER})
  268. set (CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAG}")
  269. endforeach()
  270. # -L directories
  271. link_directories(${STARPU_STATIC_LIBRARY_DIRS})
  272. else (STARPU_FOUND)
  273. message(FATAL_ERROR "StarPU not found")
  274. endif()
  275. add_executable(hello_starpu hello_starpu.c)
  276. # This section must appear after 'add_executable'
  277. if (STARPU_FOUND)
  278. # -I directories
  279. target_include_directories(hello_starpu PRIVATE ${STARPU_INCLUDE_DIRS})
  280. # Static -l libs
  281. target_link_libraries(hello_starpu PRIVATE ${STARPU_STATIC_LIBRARIES})
  282. endif()
  283. \endcode
  284. \subsection RunningABasicStarPUApplication Running a Basic StarPU Application
  285. Basic examples using StarPU are built in the directory
  286. <c>examples/basic_examples/</c> (and installed in
  287. <c>$STARPU_PATH/lib/starpu/examples/</c>). You can for example run the example
  288. <c>vector_scal</c>.
  289. \verbatim
  290. $ ./examples/basic_examples/vector_scal
  291. BEFORE: First element was 1.000000
  292. AFTER: First element is 3.140000
  293. \endverbatim
  294. When StarPU is used for the first time, the directory
  295. <c>$STARPU_HOME/.starpu/</c> is created, performance models will be stored in
  296. this directory (\ref STARPU_HOME).
  297. Please note that buses are benchmarked when StarPU is launched for the
  298. first time. This may take a few minutes, or less if <c>libhwloc</c> is
  299. installed. This step is done only once per user and per machine.
  300. \subsection RunningABasicStarPUApplicationOnMicrosoft Running a Basic StarPU Application on Microsoft Visual C
  301. Batch files are provided to run StarPU applications under Microsoft
  302. Visual C. They are installed in <c>$STARPU_PATH/bin/msvc</c>.
  303. To execute a StarPU application, you first need to set the environment
  304. variable \ref STARPU_PATH.
  305. \verbatim
  306. c:\....> cd c:\cygwin\home\ci\starpu\
  307. c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
  308. c:\....> cd bin\msvc
  309. c:\....> starpu_open.bat starpu_simple.c
  310. \endverbatim
  311. The batch script will run Microsoft Visual C with a basic project file
  312. to run the given application.
  313. The batch script <c>starpu_clean.bat</c> can be used to delete all
  314. compilation generated files.
  315. The batch script <c>starpu_exec.bat</c> can be used to compile and execute a
  316. StarPU application from the command prompt.
  317. \verbatim
  318. c:\....> cd c:\cygwin\home\ci\starpu\
  319. c:\....> set STARPU_PATH=c:\cygwin\home\ci\starpu\
  320. c:\....> cd bin\msvc
  321. c:\....> starpu_exec.bat ..\..\..\..\examples\basic_examples\hello_world.c
  322. \endverbatim
  323. \verbatim
  324. MSVC StarPU Execution
  325. ...
  326. /out:hello_world.exe
  327. ...
  328. Hello world (params = {1, 2.00000})
  329. Callback function got argument 0000042
  330. c:\....>
  331. \endverbatim
  332. \subsection KernelThreadsStartedByStarPU Kernel Threads Started by StarPU
  333. StarPU automatically binds one thread per CPU core. It does not use
  334. SMT/hyperthreading because kernels are usually already optimized for using a
  335. full core, and using hyperthreading would make kernel calibration rather random.
  336. Since driving GPUs is a CPU-consuming task, StarPU dedicates one core
  337. per GPU.
  338. While StarPU tasks are executing, the application is not supposed to do
  339. computations in the threads it starts itself, tasks should be used instead.
  340. If the application needs to reserve some cores for its own computations, it
  341. can do so with the field starpu_conf::reserve_ncpus, get the core IDs with
  342. starpu_get_next_bindid(), and bind to them with starpu_bind_thread_on().
  343. Another option is for the application to pause StarPU by calling
  344. starpu_pause(), then to perform its own computations, and then to
  345. resume StarPU by calling starpu_resume() so that StarPU can execute
  346. tasks.
  347. \subsection EnablingOpenCL Enabling OpenCL
  348. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  349. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  350. This design choice was necessary as OpenCL and CUDA can not run at the
  351. same time on the same NVIDIA GPU, as there is currently no interoperability
  352. between them.
  353. To enable OpenCL, you need either to disable CUDA when configuring StarPU:
  354. \verbatim
  355. $ ./configure --disable-cuda
  356. \endverbatim
  357. or when running applications:
  358. \verbatim
  359. $ STARPU_NCUDA=0 ./application
  360. \endverbatim
  361. OpenCL will automatically be started on any device not yet used by
  362. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  363. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  364. so:
  365. \verbatim
  366. $ STARPU_NCUDA=2 ./application
  367. \endverbatim
  368. \section BenchmarkingStarPU Benchmarking StarPU
  369. Some interesting benchmarks are installed among examples in
  370. <c>$STARPU_PATH/lib/starpu/examples/</c>. Make sure to try various
  371. schedulers, for instance <c>STARPU_SCHED=dmda</c>.
  372. \subsection TaskSizeOverhead Task Size Overhead
  373. This benchmark gives a glimpse into how long a task should be (in µs) for StarPU overhead
  374. to be low enough to keep efficiency. Running
  375. <c>tasks_size_overhead.sh</c> generates a plot
  376. of the speedup of tasks of various sizes, depending on the number of CPUs being
  377. used.
  378. \image html tasks_size_overhead.png
  379. \image latex tasks_size_overhead.eps "" width=\textwidth
  380. \subsection DataTransferLatency Data Transfer Latency
  381. <c>local_pingpong</c> performs a ping-pong between the first two CUDA nodes, and
  382. prints the measured latency.
  383. \subsection MatrixMatrixMultiplication Matrix-Matrix Multiplication
  384. <c>sgemm</c> and <c>dgemm</c> perform a blocked matrix-matrix
  385. multiplication using BLAS and cuBLAS. They output the obtained GFlops.
  386. \subsection CholeskyFactorization Cholesky Factorization
  387. <c>cholesky_*</c> perform a Cholesky factorization (single precision). They use different dependency primitives.
  388. \subsection LUFactorization LU Factorization
  389. <c>lu_*</c> perform an LU factorization. They use different dependency primitives.
  390. \subsection SimulatedBenchmarks Simulated Benchmarks
  391. It can also be convenient to try simulated benchmarks, if you want to give a try
  392. at CPU-GPU scheduling without actually having a GPU at hand. This can be done by
  393. using the SimGrid version of StarPU: first install the SimGrid simulator from
  394. http://simgrid.gforge.inria.fr/ (we tested with SimGrid from 3.11 to 3.16, and
  395. 3.18 to 3.25. SimGrid versions 3.25 and above need to be configured with \c -Denable_msg=ON.
  396. Other versions may have compatibility issues, 3.17 notably does
  397. not build at all. MPI simulation does not work with version 3.22).
  398. Then configure StarPU with \ref enable-simgrid
  399. "--enable-simgrid" and rebuild and install it, and then you can simulate the performance for a
  400. few virtualized systems shipped along StarPU: attila, mirage, idgraf, and sirocco.
  401. For instance:
  402. \verbatim
  403. $ export STARPU_PERF_MODEL_DIR=$STARPU_PATH/share/starpu/perfmodels/sampling
  404. $ export STARPU_HOSTNAME=attila
  405. $ $STARPU_PATH/lib/starpu/examples/cholesky_implicit -size $((960*20)) -nblocks 20
  406. \endverbatim
  407. Will show the performance of the cholesky factorization with the attila
  408. system. It will be interesting to try with different matrix sizes and
  409. schedulers.
  410. Performance models are available for <c>cholesky_*</c>, <c>lu_*</c>, <c>*gemm</c>, with block sizes
  411. 320, 640, or 960 (plus 1440 for sirocco), and for <c>stencil</c> with block size 128x128x128, 192x192x192, and
  412. 256x256x256.
  413. Read the chapter \ref SimGridSupport for more information on the SimGrid support.
  414. */