dw_sparse_cg.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010, 2011, 2015 Université de Bordeaux
  4. * Copyright (C) 2010, 2011, 2012, 2013, 2016 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * Conjugate gradients for Sparse matrices
  19. * The task graph is declared through tag dependencies
  20. */
  21. #include "dw_sparse_cg.h"
  22. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  23. static struct starpu_task *create_task(starpu_tag_t id)
  24. {
  25. struct starpu_codelet *cl = calloc(1,sizeof(struct starpu_codelet));
  26. struct starpu_task *task = starpu_task_create();
  27. task->cl = cl;
  28. task->cl_arg = NULL;
  29. task->use_tag = 1;
  30. task->tag_id = id;
  31. return task;
  32. }
  33. static void create_data(float **_nzvalA, float **_vecb, float **_vecx, uint32_t *_nnz, uint32_t *_nrow, uint32_t **_colind, uint32_t **_rowptr)
  34. {
  35. /* we need a sparse symetric (definite positive ?) matrix and a "dense" vector */
  36. /* example of 3-band matrix */
  37. float *nzval;
  38. uint32_t nnz;
  39. uint32_t *colind;
  40. uint32_t *rowptr;
  41. nnz = 3*_size-2;
  42. nzval = malloc(nnz*sizeof(float));
  43. colind = malloc(nnz*sizeof(uint32_t));
  44. rowptr = malloc(_size*sizeof(uint32_t));
  45. assert(nzval);
  46. assert(colind);
  47. assert(rowptr);
  48. /* fill the matrix */
  49. unsigned row;
  50. unsigned pos = 0;
  51. for (row = 0; row < _size; row++)
  52. {
  53. rowptr[row] = pos;
  54. if (row > 0)
  55. {
  56. nzval[pos] = 1.0f;
  57. colind[pos] = row-1;
  58. pos++;
  59. }
  60. nzval[pos] = 5.0f;
  61. colind[pos] = row;
  62. pos++;
  63. if (row < _size - 1)
  64. {
  65. nzval[pos] = 1.0f;
  66. colind[pos] = row+1;
  67. pos++;
  68. }
  69. }
  70. *_nnz = nnz;
  71. *_nrow = _size;
  72. *_nzvalA = nzval;
  73. *_colind = colind;
  74. *_rowptr = rowptr;
  75. STARPU_ASSERT(pos == nnz);
  76. /* initiate the 2 vectors */
  77. float *invec, *outvec;
  78. invec = malloc(_size*sizeof(float));
  79. assert(invec);
  80. outvec = malloc(_size*sizeof(float));
  81. assert(outvec);
  82. /* fill those */
  83. unsigned ind;
  84. for (ind = 0; ind < _size; ind++)
  85. {
  86. invec[ind] = 2.0f;
  87. outvec[ind] = 0.0f;
  88. }
  89. *_vecb = invec;
  90. *_vecx = outvec;
  91. }
  92. void init_problem(void)
  93. {
  94. /* create the sparse input matrix */
  95. float *nzval;
  96. float *vecb;
  97. float *vecx;
  98. uint32_t nnz;
  99. uint32_t nrow;
  100. uint32_t *colind;
  101. uint32_t *rowptr;
  102. create_data(&nzval, &vecb, &vecx, &nnz, &nrow, &colind, &rowptr);
  103. conjugate_gradient(nzval, vecb, vecx, nnz, nrow, colind, rowptr);
  104. }
  105. /*
  106. * cg initialization phase
  107. */
  108. void init_cg(struct cg_problem *problem)
  109. {
  110. int ret;
  111. problem->i = 0;
  112. /* r = b - A x */
  113. struct starpu_task *task1 = create_task(1UL);
  114. task1->cl->cpu_funcs[0] = cpu_codelet_func_1;
  115. task1->cl->cpu_funcs_name[0] = "cpu_codelet_func_1";
  116. task1->cl->nbuffers = 4;
  117. task1->cl->modes[0] = STARPU_R;
  118. task1->cl->modes[1] = STARPU_R;
  119. task1->cl->modes[2] = STARPU_W;
  120. task1->cl->modes[3] = STARPU_R;
  121. task1->handles[0] = problem->ds_matrixA;
  122. task1->handles[1] = problem->ds_vecx;
  123. task1->handles[2] = problem->ds_vecr;
  124. task1->handles[3] = problem->ds_vecb;
  125. /* d = r */
  126. struct starpu_task *task2 = create_task(2UL);
  127. task2->cl->cpu_funcs[0] = cpu_codelet_func_2;
  128. task2->cl->cpu_funcs_name[0] = "cpu_codelet_func_2";
  129. task2->cl->nbuffers = 2;
  130. task2->cl->modes[0] = STARPU_W;
  131. task2->cl->modes[1] = STARPU_R;
  132. task2->handles[0] = problem->ds_vecd;
  133. task2->handles[1] = problem->ds_vecr;
  134. starpu_tag_declare_deps((starpu_tag_t)2UL, 1, (starpu_tag_t)1UL);
  135. /* delta_new = trans(r) r */
  136. struct starpu_task *task3 = create_task(3UL);
  137. #ifdef STARPU_USE_CUDA
  138. task3->cl->cuda_funcs[0] = cublas_codelet_func_3;
  139. #endif
  140. task3->cl->cpu_funcs[0] = cpu_codelet_func_3;
  141. task3->cl->cpu_funcs_name[0] = "cpu_codelet_func_3";
  142. task3->cl_arg = problem;
  143. task3->cl_arg_size = sizeof(*problem);
  144. task3->cl->nbuffers = 1;
  145. task3->cl->modes[0] = STARPU_R;
  146. task3->handles[0] = problem->ds_vecr;
  147. task3->callback_func = iteration_cg;
  148. task3->callback_arg = problem;
  149. /* XXX 3 should only depend on 1 ... */
  150. starpu_tag_declare_deps((starpu_tag_t)3UL, 1, (starpu_tag_t)2UL);
  151. /* launch the computation now */
  152. ret = starpu_task_submit(task1);
  153. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  154. ret = starpu_task_submit(task2);
  155. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  156. ret = starpu_task_submit(task3);
  157. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  158. }
  159. /*
  160. * the inner iteration of the cg algorithm
  161. * the codelet code launcher is its own callback !
  162. */
  163. void launch_new_cg_iteration(struct cg_problem *problem)
  164. {
  165. int ret;
  166. unsigned iter = problem->i;
  167. unsigned long long maskiter = ((unsigned long long)iter*1024);
  168. /* q = A d */
  169. struct starpu_task *task4 = create_task(maskiter | 4UL);
  170. task4->cl->cpu_funcs[0] = cpu_codelet_func_4;
  171. task4->cl->cpu_funcs_name[0] = "cpu_codelet_func_4";
  172. task4->cl->nbuffers = 3;
  173. task4->cl->modes[0] = STARPU_R;
  174. task4->cl->modes[1] = STARPU_R;
  175. task4->cl->modes[2] = STARPU_W;
  176. task4->handles[0] = problem->ds_matrixA;
  177. task4->handles[1] = problem->ds_vecd;
  178. task4->handles[2] = problem->ds_vecq;
  179. /* alpha = delta_new / ( trans(d) q )*/
  180. struct starpu_task *task5 = create_task(maskiter | 5UL);
  181. #ifdef STARPU_USE_CUDA
  182. task5->cl->cuda_funcs[0] = cublas_codelet_func_5;
  183. #endif
  184. task5->cl->cpu_funcs[0] = cpu_codelet_func_5;
  185. task5->cl->cpu_funcs_name[0] = "cpu_codelet_func_5";
  186. task5->cl_arg = problem;
  187. task5->cl_arg_size = sizeof(*problem);
  188. task5->cl->nbuffers = 2;
  189. task5->cl->modes[0] = STARPU_R;
  190. task5->cl->modes[1] = STARPU_R;
  191. task5->handles[0] = problem->ds_vecd;
  192. task5->handles[1] = problem->ds_vecq;
  193. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 5UL), 1, (starpu_tag_t)(maskiter | 4UL));
  194. /* x = x + alpha d */
  195. struct starpu_task *task6 = create_task(maskiter | 6UL);
  196. #ifdef STARPU_USE_CUDA
  197. task6->cl->cuda_funcs[0] = cublas_codelet_func_6;
  198. task6->cl->cuda_flags[0] = STARPU_CUDA_ASYNC;
  199. #endif
  200. task6->cl->cpu_funcs[0] = cpu_codelet_func_6;
  201. task6->cl->cpu_funcs_name[0] = "cpu_codelet_func_6";
  202. task6->cl_arg = problem;
  203. task6->cl_arg_size = sizeof(*problem);
  204. task6->cl->nbuffers = 2;
  205. task6->cl->modes[0] = STARPU_RW;
  206. task6->cl->modes[1] = STARPU_R;
  207. task6->handles[0] = problem->ds_vecx;
  208. task6->handles[1] = problem->ds_vecd;
  209. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 6UL), 1, (starpu_tag_t)(maskiter | 5UL));
  210. /* r = r - alpha q */
  211. struct starpu_task *task7 = create_task(maskiter | 7UL);
  212. #ifdef STARPU_USE_CUDA
  213. task7->cl->cuda_funcs[0] = cublas_codelet_func_7;
  214. task7->cl->cuda_flags[0] = STARPU_CUDA_ASYNC;
  215. #endif
  216. task7->cl->cpu_funcs[0] = cpu_codelet_func_7;
  217. task7->cl->cpu_funcs_name[0] = "cpu_codelet_func_7";
  218. task7->cl_arg = problem;
  219. task7->cl_arg_size = sizeof(*problem);
  220. task7->cl->nbuffers = 2;
  221. task7->cl->modes[0] = STARPU_RW;
  222. task7->cl->modes[1] = STARPU_R;
  223. task7->handles[0] = problem->ds_vecr;
  224. task7->handles[1] = problem->ds_vecq;
  225. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 7UL), 1, (starpu_tag_t)(maskiter | 6UL));
  226. /* update delta_* and compute beta */
  227. struct starpu_task *task8 = create_task(maskiter | 8UL);
  228. #ifdef STARPU_USE_CUDA
  229. task8->cl->cuda_funcs[0] = cublas_codelet_func_8;
  230. #endif
  231. task8->cl->cpu_funcs[0] = cpu_codelet_func_8;
  232. task8->cl->cpu_funcs_name[0] = "cpu_codelet_func_8";
  233. task8->cl_arg = problem;
  234. task8->cl_arg_size = sizeof(*problem);
  235. task8->cl->nbuffers = 1;
  236. task8->cl->modes[0] = STARPU_R;
  237. task8->handles[0] = problem->ds_vecr;
  238. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 8UL), 1, (starpu_tag_t)(maskiter | 7UL));
  239. /* d = r + beta d */
  240. struct starpu_task *task9 = create_task(maskiter | 9UL);
  241. #ifdef STARPU_USE_CUDA
  242. task9->cl->cuda_funcs[0] = cublas_codelet_func_9;
  243. task9->cl->cuda_flags[0] = STARPU_CUDA_ASYNC;
  244. #endif
  245. task9->cl->cpu_funcs[0] = cpu_codelet_func_9;
  246. task9->cl->cpu_funcs_name[0] = "cpu_codelet_func_9";
  247. task9->cl_arg = problem;
  248. task9->cl_arg_size = sizeof(*problem);
  249. task9->cl->nbuffers = 2;
  250. task9->cl->modes[0] = STARPU_RW;
  251. task9->cl->modes[1] = STARPU_R;
  252. task9->handles[0] = problem->ds_vecd;
  253. task9->handles[1] = problem->ds_vecr;
  254. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 9UL), 1, (starpu_tag_t)(maskiter | 8UL));
  255. task9->callback_func = iteration_cg;
  256. task9->callback_arg = problem;
  257. /* launch the computation now */
  258. ret = starpu_task_submit(task4);
  259. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  260. ret = starpu_task_submit(task5);
  261. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  262. ret = starpu_task_submit(task6);
  263. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  264. ret = starpu_task_submit(task7);
  265. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  266. ret = starpu_task_submit(task8);
  267. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  268. ret = starpu_task_submit(task9);
  269. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  270. }
  271. void iteration_cg(void *problem)
  272. {
  273. struct cg_problem *pb = problem;
  274. FPRINTF(stdout, "i : %d (MAX %d)\n\tdelta_new %f (%f)\n", pb->i, MAXITER, pb->delta_new, sqrt(pb->delta_new / pb->size));
  275. if ((pb->i < MAXITER) &&
  276. (pb->delta_new > pb->epsilon) )
  277. {
  278. if (pb->i % 1000 == 0)
  279. FPRINTF(stdout, "i : %d\n\tdelta_new %f (%f)\n", pb->i, pb->delta_new, sqrt(pb->delta_new / pb->size));
  280. pb->i++;
  281. /* we did not reach the stop condition yet */
  282. launch_new_cg_iteration(problem);
  283. }
  284. else
  285. {
  286. /* we may stop */
  287. FPRINTF(stdout, "We are done ... after %d iterations \n", pb->i - 1);
  288. FPRINTF(stdout, "i : %d\n\tdelta_new %2.5f\n", pb->i, pb->delta_new);
  289. sem_post(pb->sem);
  290. }
  291. }
  292. /*
  293. * initializing the problem
  294. */
  295. void conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  296. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  297. {
  298. /* first register all the data structures to StarPU */
  299. starpu_data_handle_t ds_matrixA;
  300. starpu_data_handle_t ds_vecx, ds_vecb;
  301. starpu_data_handle_t ds_vecr, ds_vecd, ds_vecq;
  302. /* first the user-allocated data */
  303. starpu_csr_data_register(&ds_matrixA, STARPU_MAIN_RAM, nnz, nrow,
  304. (uintptr_t)nzvalA, colind, rowptr, 0, sizeof(float));
  305. starpu_vector_data_register(&ds_vecx, STARPU_MAIN_RAM, (uintptr_t)vecx, nrow, sizeof(float));
  306. starpu_vector_data_register(&ds_vecb, STARPU_MAIN_RAM, (uintptr_t)vecb, nrow, sizeof(float));
  307. /* then allocate the algorithm intern data */
  308. float *ptr_vecr, *ptr_vecd, *ptr_vecq;
  309. unsigned i;
  310. ptr_vecr = malloc(nrow*sizeof(float));
  311. ptr_vecd = malloc(nrow*sizeof(float));
  312. ptr_vecq = malloc(nrow*sizeof(float));
  313. for (i = 0; i < nrow; i++)
  314. {
  315. ptr_vecr[i] = 0.0f;
  316. ptr_vecd[i] = 0.0f;
  317. ptr_vecq[i] = 0.0f;
  318. }
  319. FPRINTF(stdout, "nrow = %u \n", nrow);
  320. /* and register them as well */
  321. starpu_vector_data_register(&ds_vecr, STARPU_MAIN_RAM, (uintptr_t)ptr_vecr, nrow, sizeof(float));
  322. starpu_vector_data_register(&ds_vecd, STARPU_MAIN_RAM, (uintptr_t)ptr_vecd, nrow, sizeof(float));
  323. starpu_vector_data_register(&ds_vecq, STARPU_MAIN_RAM, (uintptr_t)ptr_vecq, nrow, sizeof(float));
  324. /* we now have the complete problem */
  325. struct cg_problem problem;
  326. problem.ds_matrixA = ds_matrixA;
  327. problem.ds_vecx = ds_vecx;
  328. problem.ds_vecb = ds_vecb;
  329. problem.ds_vecr = ds_vecr;
  330. problem.ds_vecd = ds_vecd;
  331. problem.ds_vecq = ds_vecq;
  332. problem.epsilon = EPSILON;
  333. problem.size = nrow;
  334. problem.delta_old = 1.0;
  335. problem.delta_new = 1.0; /* just to make sure we do at least one iteration */
  336. /* we need a semaphore to synchronize with callbacks */
  337. sem_t sem;
  338. sem_init(&sem, 0, 0U);
  339. problem.sem = &sem;
  340. init_cg(&problem);
  341. sem_wait(&sem);
  342. sem_destroy(&sem);
  343. print_results(vecx, nrow);
  344. starpu_data_unregister(ds_matrixA);
  345. starpu_data_unregister(ds_vecx);
  346. starpu_data_unregister(ds_vecb);
  347. starpu_data_unregister(ds_vecr);
  348. starpu_data_unregister(ds_vecd);
  349. starpu_data_unregister(ds_vecq);
  350. }
  351. void do_conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  352. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  353. {
  354. /* start the runtime */
  355. int ret;
  356. ret = starpu_init(NULL);
  357. if (ret == -ENODEV)
  358. exit(77);
  359. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  360. starpu_cublas_init();
  361. conjugate_gradient(nzvalA, vecb, vecx, nnz, nrow, colind, rowptr);
  362. }