| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 | 
							- /* dlasdq.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int _starpu_dlasdq_(char *uplo, integer *sqre, integer *n, integer *
 
- 	ncvt, integer *nru, integer *ncc, doublereal *d__, doublereal *e, 
 
- 	doublereal *vt, integer *ldvt, doublereal *u, integer *ldu, 
 
- 	doublereal *c__, integer *ldc, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
 
- 	    i__2;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal r__, cs, sn;
 
-     integer np1, isub;
 
-     doublereal smin;
 
-     integer sqre1;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     extern /* Subroutine */ int _starpu_dlasr_(char *, char *, char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer *
 
- , doublereal *, integer *);
 
-     integer iuplo;
 
-     extern /* Subroutine */ int _starpu_dlartg_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *), _starpu_xerbla_(char *, 
 
- 	    integer *), _starpu_dbdsqr_(char *, integer *, integer *, integer 
 
- 	    *, integer *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     logical rotate;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASDQ computes the singular value decomposition (SVD) of a real */
 
- /*  (upper or lower) bidiagonal matrix with diagonal D and offdiagonal */
 
- /*  E, accumulating the transformations if desired. Letting B denote */
 
- /*  the input bidiagonal matrix, the algorithm computes orthogonal */
 
- /*  matrices Q and P such that B = Q * S * P' (P' denotes the transpose */
 
- /*  of P). The singular values S are overwritten on D. */
 
- /*  The input matrix U  is changed to U  * Q  if desired. */
 
- /*  The input matrix VT is changed to P' * VT if desired. */
 
- /*  The input matrix C  is changed to Q' * C  if desired. */
 
- /*  See "Computing  Small Singular Values of Bidiagonal Matrices With */
 
- /*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
 
- /*  LAPACK Working Note #3, for a detailed description of the algorithm. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO  (input) CHARACTER*1 */
 
- /*        On entry, UPLO specifies whether the input bidiagonal matrix */
 
- /*        is upper or lower bidiagonal, and wether it is square are */
 
- /*        not. */
 
- /*           UPLO = 'U' or 'u'   B is upper bidiagonal. */
 
- /*           UPLO = 'L' or 'l'   B is lower bidiagonal. */
 
- /*  SQRE  (input) INTEGER */
 
- /*        = 0: then the input matrix is N-by-N. */
 
- /*        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and */
 
- /*             (N+1)-by-N if UPLU = 'L'. */
 
- /*        The bidiagonal matrix has */
 
- /*        N = NL + NR + 1 rows and */
 
- /*        M = N + SQRE >= N columns. */
 
- /*  N     (input) INTEGER */
 
- /*        On entry, N specifies the number of rows and columns */
 
- /*        in the matrix. N must be at least 0. */
 
- /*  NCVT  (input) INTEGER */
 
- /*        On entry, NCVT specifies the number of columns of */
 
- /*        the matrix VT. NCVT must be at least 0. */
 
- /*  NRU   (input) INTEGER */
 
- /*        On entry, NRU specifies the number of rows of */
 
- /*        the matrix U. NRU must be at least 0. */
 
- /*  NCC   (input) INTEGER */
 
- /*        On entry, NCC specifies the number of columns of */
 
- /*        the matrix C. NCC must be at least 0. */
 
- /*  D     (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*        On entry, D contains the diagonal entries of the */
 
- /*        bidiagonal matrix whose SVD is desired. On normal exit, */
 
- /*        D contains the singular values in ascending order. */
 
- /*  E     (input/output) DOUBLE PRECISION array. */
 
- /*        dimension is (N-1) if SQRE = 0 and N if SQRE = 1. */
 
- /*        On entry, the entries of E contain the offdiagonal entries */
 
- /*        of the bidiagonal matrix whose SVD is desired. On normal */
 
- /*        exit, E will contain 0. If the algorithm does not converge, */
 
- /*        D and E will contain the diagonal and superdiagonal entries */
 
- /*        of a bidiagonal matrix orthogonally equivalent to the one */
 
- /*        given as input. */
 
- /*  VT    (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) */
 
- /*        On entry, contains a matrix which on exit has been */
 
- /*        premultiplied by P', dimension N-by-NCVT if SQRE = 0 */
 
- /*        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). */
 
- /*  LDVT  (input) INTEGER */
 
- /*        On entry, LDVT specifies the leading dimension of VT as */
 
- /*        declared in the calling (sub) program. LDVT must be at */
 
- /*        least 1. If NCVT is nonzero LDVT must also be at least N. */
 
- /*  U     (input/output) DOUBLE PRECISION array, dimension (LDU, N) */
 
- /*        On entry, contains a  matrix which on exit has been */
 
- /*        postmultiplied by Q, dimension NRU-by-N if SQRE = 0 */
 
- /*        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). */
 
- /*  LDU   (input) INTEGER */
 
- /*        On entry, LDU  specifies the leading dimension of U as */
 
- /*        declared in the calling (sub) program. LDU must be at */
 
- /*        least max( 1, NRU ) . */
 
- /*  C     (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) */
 
- /*        On entry, contains an N-by-NCC matrix which on exit */
 
- /*        has been premultiplied by Q'  dimension N-by-NCC if SQRE = 0 */
 
- /*        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). */
 
- /*  LDC   (input) INTEGER */
 
- /*        On entry, LDC  specifies the leading dimension of C as */
 
- /*        declared in the calling (sub) program. LDC must be at */
 
- /*        least 1. If NCC is nonzero, LDC must also be at least N. */
 
- /*  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N) */
 
- /*        Workspace. Only referenced if one of NCVT, NRU, or NCC is */
 
- /*        nonzero, and if N is at least 2. */
 
- /*  INFO  (output) INTEGER */
 
- /*        On exit, a value of 0 indicates a successful exit. */
 
- /*        If INFO < 0, argument number -INFO is illegal. */
 
- /*        If INFO > 0, the algorithm did not converge, and INFO */
 
- /*        specifies how many superdiagonals did not converge. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     vt_dim1 = *ldvt;
 
-     vt_offset = 1 + vt_dim1;
 
-     vt -= vt_offset;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     c_dim1 = *ldc;
 
-     c_offset = 1 + c_dim1;
 
-     c__ -= c_offset;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     iuplo = 0;
 
-     if (_starpu_lsame_(uplo, "U")) {
 
- 	iuplo = 1;
 
-     }
 
-     if (_starpu_lsame_(uplo, "L")) {
 
- 	iuplo = 2;
 
-     }
 
-     if (iuplo == 0) {
 
- 	*info = -1;
 
-     } else if (*sqre < 0 || *sqre > 1) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (*ncvt < 0) {
 
- 	*info = -4;
 
-     } else if (*nru < 0) {
 
- 	*info = -5;
 
-     } else if (*ncc < 0) {
 
- 	*info = -6;
 
-     } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
 
- 	*info = -10;
 
-     } else if (*ldu < max(1,*nru)) {
 
- 	*info = -12;
 
-     } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
 
- 	*info = -14;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLASDQ", &i__1);
 
- 	return 0;
 
-     }
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     ROTATE is true if any singular vectors desired, false otherwise */
 
-     rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
 
-     np1 = *n + 1;
 
-     sqre1 = *sqre;
 
- /*     If matrix non-square upper bidiagonal, rotate to be lower */
 
- /*     bidiagonal.  The rotations are on the right. */
 
-     if (iuplo == 1 && sqre1 == 1) {
 
- 	i__1 = *n - 1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 
- 	    d__[i__] = r__;
 
- 	    e[i__] = sn * d__[i__ + 1];
 
- 	    d__[i__ + 1] = cs * d__[i__ + 1];
 
- 	    if (rotate) {
 
- 		work[i__] = cs;
 
- 		work[*n + i__] = sn;
 
- 	    }
 
- /* L10: */
 
- 	}
 
- 	_starpu_dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
 
- 	d__[*n] = r__;
 
- 	e[*n] = 0.;
 
- 	if (rotate) {
 
- 	    work[*n] = cs;
 
- 	    work[*n + *n] = sn;
 
- 	}
 
- 	iuplo = 2;
 
- 	sqre1 = 0;
 
- /*        Update singular vectors if desired. */
 
- 	if (*ncvt > 0) {
 
- 	    _starpu_dlasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
 
- 		    vt_offset], ldvt);
 
- 	}
 
-     }
 
- /*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
 
- /*     by applying Givens rotations on the left. */
 
-     if (iuplo == 2) {
 
- 	i__1 = *n - 1;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 
- 	    d__[i__] = r__;
 
- 	    e[i__] = sn * d__[i__ + 1];
 
- 	    d__[i__ + 1] = cs * d__[i__ + 1];
 
- 	    if (rotate) {
 
- 		work[i__] = cs;
 
- 		work[*n + i__] = sn;
 
- 	    }
 
- /* L20: */
 
- 	}
 
- /*        If matrix (N+1)-by-N lower bidiagonal, one additional */
 
- /*        rotation is needed. */
 
- 	if (sqre1 == 1) {
 
- 	    _starpu_dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
 
- 	    d__[*n] = r__;
 
- 	    if (rotate) {
 
- 		work[*n] = cs;
 
- 		work[*n + *n] = sn;
 
- 	    }
 
- 	}
 
- /*        Update singular vectors if desired. */
 
- 	if (*nru > 0) {
 
- 	    if (sqre1 == 0) {
 
- 		_starpu_dlasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
 
- 			u_offset], ldu);
 
- 	    } else {
 
- 		_starpu_dlasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
 
- 			u_offset], ldu);
 
- 	    }
 
- 	}
 
- 	if (*ncc > 0) {
 
- 	    if (sqre1 == 0) {
 
- 		_starpu_dlasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
 
- 			c_offset], ldc);
 
- 	    } else {
 
- 		_starpu_dlasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
 
- 			c_offset], ldc);
 
- 	    }
 
- 	}
 
-     }
 
- /*     Call DBDSQR to compute the SVD of the reduced real */
 
- /*     N-by-N upper bidiagonal matrix. */
 
-     _starpu_dbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
 
- 	    u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
 
- /*     Sort the singular values into ascending order (insertion sort on */
 
- /*     singular values, but only one transposition per singular vector) */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- /*        Scan for smallest D(I). */
 
- 	isub = i__;
 
- 	smin = d__[i__];
 
- 	i__2 = *n;
 
- 	for (j = i__ + 1; j <= i__2; ++j) {
 
- 	    if (d__[j] < smin) {
 
- 		isub = j;
 
- 		smin = d__[j];
 
- 	    }
 
- /* L30: */
 
- 	}
 
- 	if (isub != i__) {
 
- /*           Swap singular values and vectors. */
 
- 	    d__[isub] = d__[i__];
 
- 	    d__[i__] = smin;
 
- 	    if (*ncvt > 0) {
 
- 		_starpu_dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1], 
 
- 			ldvt);
 
- 	    }
 
- 	    if (*nru > 0) {
 
- 		_starpu_dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
 
- , &c__1);
 
- 	    }
 
- 	    if (*ncc > 0) {
 
- 		_starpu_dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
 
- 			;
 
- 	    }
 
- 	}
 
- /* L40: */
 
-     }
 
-     return 0;
 
- /*     End of DLASDQ */
 
- } /* _starpu_dlasdq_ */
 
 
  |