| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026 | 
							- /* dlaqr5.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b7 = 0.;
 
- static doublereal c_b8 = 1.;
 
- static integer c__3 = 3;
 
- static integer c__1 = 1;
 
- static integer c__2 = 2;
 
- /* Subroutine */ int _starpu_dlaqr5_(logical *wantt, logical *wantz, integer *kacc22, 
 
- 	integer *n, integer *ktop, integer *kbot, integer *nshfts, doublereal 
 
- 	*sr, doublereal *si, doublereal *h__, integer *ldh, integer *iloz, 
 
- 	integer *ihiz, doublereal *z__, integer *ldz, doublereal *v, integer *
 
- 	ldv, doublereal *u, integer *ldu, integer *nv, doublereal *wv, 
 
- 	integer *ldwv, integer *nh, doublereal *wh, integer *ldwh)
 
- {
 
-     /* System generated locals */
 
-     integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1, 
 
- 	    wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
 
- 	     i__4, i__5, i__6, i__7;
 
-     doublereal d__1, d__2, d__3, d__4, d__5;
 
-     /* Local variables */
 
-     integer i__, j, k, m, i2, j2, i4, j4, k1;
 
-     doublereal h11, h12, h21, h22;
 
-     integer m22, ns, nu;
 
-     doublereal vt[3], scl;
 
-     integer kdu, kms;
 
-     doublereal ulp;
 
-     integer knz, kzs;
 
-     doublereal tst1, tst2, beta;
 
-     logical blk22, bmp22;
 
-     integer mend, jcol, jlen, jbot, mbot;
 
-     doublereal swap;
 
-     integer jtop, jrow, mtop;
 
-     doublereal alpha;
 
-     logical accum;
 
-     extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     integer ndcol, incol, krcol, nbmps;
 
-     extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dlaqr1_(
 
- 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *), _starpu_dlabad_(doublereal *, 
 
- 	    doublereal *);
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     extern /* Subroutine */ int _starpu_dlarfg_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *), _starpu_dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *);
 
-     doublereal safmax, refsum;
 
-     integer mstart;
 
-     doublereal smlnum;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*     This auxiliary subroutine called by DLAQR0 performs a */
 
- /*     single small-bulge multi-shift QR sweep. */
 
- /*      WANTT  (input) logical scalar */
 
- /*             WANTT = .true. if the quasi-triangular Schur factor */
 
- /*             is being computed.  WANTT is set to .false. otherwise. */
 
- /*      WANTZ  (input) logical scalar */
 
- /*             WANTZ = .true. if the orthogonal Schur factor is being */
 
- /*             computed.  WANTZ is set to .false. otherwise. */
 
- /*      KACC22 (input) integer with value 0, 1, or 2. */
 
- /*             Specifies the computation mode of far-from-diagonal */
 
- /*             orthogonal updates. */
 
- /*        = 0: DLAQR5 does not accumulate reflections and does not */
 
- /*             use matrix-matrix multiply to update far-from-diagonal */
 
- /*             matrix entries. */
 
- /*        = 1: DLAQR5 accumulates reflections and uses matrix-matrix */
 
- /*             multiply to update the far-from-diagonal matrix entries. */
 
- /*        = 2: DLAQR5 accumulates reflections, uses matrix-matrix */
 
- /*             multiply to update the far-from-diagonal matrix entries, */
 
- /*             and takes advantage of 2-by-2 block structure during */
 
- /*             matrix multiplies. */
 
- /*      N      (input) integer scalar */
 
- /*             N is the order of the Hessenberg matrix H upon which this */
 
- /*             subroutine operates. */
 
- /*      KTOP   (input) integer scalar */
 
- /*      KBOT   (input) integer scalar */
 
- /*             These are the first and last rows and columns of an */
 
- /*             isolated diagonal block upon which the QR sweep is to be */
 
- /*             applied. It is assumed without a check that */
 
- /*                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0 */
 
- /*             and */
 
- /*                       either KBOT = N  or   H(KBOT+1,KBOT) = 0. */
 
- /*      NSHFTS (input) integer scalar */
 
- /*             NSHFTS gives the number of simultaneous shifts.  NSHFTS */
 
- /*             must be positive and even. */
 
- /*      SR     (input/output) DOUBLE PRECISION array of size (NSHFTS) */
 
- /*      SI     (input/output) DOUBLE PRECISION array of size (NSHFTS) */
 
- /*             SR contains the real parts and SI contains the imaginary */
 
- /*             parts of the NSHFTS shifts of origin that define the */
 
- /*             multi-shift QR sweep.  On output SR and SI may be */
 
- /*             reordered. */
 
- /*      H      (input/output) DOUBLE PRECISION array of size (LDH,N) */
 
- /*             On input H contains a Hessenberg matrix.  On output a */
 
- /*             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
 
- /*             to the isolated diagonal block in rows and columns KTOP */
 
- /*             through KBOT. */
 
- /*      LDH    (input) integer scalar */
 
- /*             LDH is the leading dimension of H just as declared in the */
 
- /*             calling procedure.  LDH.GE.MAX(1,N). */
 
- /*      ILOZ   (input) INTEGER */
 
- /*      IHIZ   (input) INTEGER */
 
- /*             Specify the rows of Z to which transformations must be */
 
- /*             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N */
 
- /*      Z      (input/output) DOUBLE PRECISION array of size (LDZ,IHI) */
 
- /*             If WANTZ = .TRUE., then the QR Sweep orthogonal */
 
- /*             similarity transformation is accumulated into */
 
- /*             Z(ILOZ:IHIZ,ILO:IHI) from the right. */
 
- /*             If WANTZ = .FALSE., then Z is unreferenced. */
 
- /*      LDZ    (input) integer scalar */
 
- /*             LDA is the leading dimension of Z just as declared in */
 
- /*             the calling procedure. LDZ.GE.N. */
 
- /*      V      (workspace) DOUBLE PRECISION array of size (LDV,NSHFTS/2) */
 
- /*      LDV    (input) integer scalar */
 
- /*             LDV is the leading dimension of V as declared in the */
 
- /*             calling procedure.  LDV.GE.3. */
 
- /*      U      (workspace) DOUBLE PRECISION array of size */
 
- /*             (LDU,3*NSHFTS-3) */
 
- /*      LDU    (input) integer scalar */
 
- /*             LDU is the leading dimension of U just as declared in the */
 
- /*             in the calling subroutine.  LDU.GE.3*NSHFTS-3. */
 
- /*      NH     (input) integer scalar */
 
- /*             NH is the number of columns in array WH available for */
 
- /*             workspace. NH.GE.1. */
 
- /*      WH     (workspace) DOUBLE PRECISION array of size (LDWH,NH) */
 
- /*      LDWH   (input) integer scalar */
 
- /*             Leading dimension of WH just as declared in the */
 
- /*             calling procedure.  LDWH.GE.3*NSHFTS-3. */
 
- /*      NV     (input) integer scalar */
 
- /*             NV is the number of rows in WV agailable for workspace. */
 
- /*             NV.GE.1. */
 
- /*      WV     (workspace) DOUBLE PRECISION array of size */
 
- /*             (LDWV,3*NSHFTS-3) */
 
- /*      LDWV   (input) integer scalar */
 
- /*             LDWV is the leading dimension of WV as declared in the */
 
- /*             in the calling subroutine.  LDWV.GE.NV. */
 
- /*     ================================================================ */
 
- /*     Based on contributions by */
 
- /*        Karen Braman and Ralph Byers, Department of Mathematics, */
 
- /*        University of Kansas, USA */
 
- /*     ================================================================ */
 
- /*     Reference: */
 
- /*     K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
 
- /*     Algorithm Part I: Maintaining Well Focused Shifts, and */
 
- /*     Level 3 Performance, SIAM Journal of Matrix Analysis, */
 
- /*     volume 23, pages 929--947, 2002. */
 
- /*     ================================================================ */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     ==== If there are no shifts, then there is nothing to do. ==== */
 
-     /* Parameter adjustments */
 
-     --sr;
 
-     --si;
 
-     h_dim1 = *ldh;
 
-     h_offset = 1 + h_dim1;
 
-     h__ -= h_offset;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     v_dim1 = *ldv;
 
-     v_offset = 1 + v_dim1;
 
-     v -= v_offset;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     wv_dim1 = *ldwv;
 
-     wv_offset = 1 + wv_dim1;
 
-     wv -= wv_offset;
 
-     wh_dim1 = *ldwh;
 
-     wh_offset = 1 + wh_dim1;
 
-     wh -= wh_offset;
 
-     /* Function Body */
 
-     if (*nshfts < 2) {
 
- 	return 0;
 
-     }
 
- /*     ==== If the active block is empty or 1-by-1, then there */
 
- /*     .    is nothing to do. ==== */
 
-     if (*ktop >= *kbot) {
 
- 	return 0;
 
-     }
 
- /*     ==== Shuffle shifts into pairs of real shifts and pairs */
 
- /*     .    of complex conjugate shifts assuming complex */
 
- /*     .    conjugate shifts are already adjacent to one */
 
- /*     .    another. ==== */
 
-     i__1 = *nshfts - 2;
 
-     for (i__ = 1; i__ <= i__1; i__ += 2) {
 
- 	if (si[i__] != -si[i__ + 1]) {
 
- 	    swap = sr[i__];
 
- 	    sr[i__] = sr[i__ + 1];
 
- 	    sr[i__ + 1] = sr[i__ + 2];
 
- 	    sr[i__ + 2] = swap;
 
- 	    swap = si[i__];
 
- 	    si[i__] = si[i__ + 1];
 
- 	    si[i__ + 1] = si[i__ + 2];
 
- 	    si[i__ + 2] = swap;
 
- 	}
 
- /* L10: */
 
-     }
 
- /*     ==== NSHFTS is supposed to be even, but if it is odd, */
 
- /*     .    then simply reduce it by one.  The shuffle above */
 
- /*     .    ensures that the dropped shift is real and that */
 
- /*     .    the remaining shifts are paired. ==== */
 
-     ns = *nshfts - *nshfts % 2;
 
- /*     ==== Machine constants for deflation ==== */
 
-     safmin = _starpu_dlamch_("SAFE MINIMUM");
 
-     safmax = 1. / safmin;
 
-     _starpu_dlabad_(&safmin, &safmax);
 
-     ulp = _starpu_dlamch_("PRECISION");
 
-     smlnum = safmin * ((doublereal) (*n) / ulp);
 
- /*     ==== Use accumulated reflections to update far-from-diagonal */
 
- /*     .    entries ? ==== */
 
-     accum = *kacc22 == 1 || *kacc22 == 2;
 
- /*     ==== If so, exploit the 2-by-2 block structure? ==== */
 
-     blk22 = ns > 2 && *kacc22 == 2;
 
- /*     ==== clear trash ==== */
 
-     if (*ktop + 2 <= *kbot) {
 
- 	h__[*ktop + 2 + *ktop * h_dim1] = 0.;
 
-     }
 
- /*     ==== NBMPS = number of 2-shift bulges in the chain ==== */
 
-     nbmps = ns / 2;
 
- /*     ==== KDU = width of slab ==== */
 
-     kdu = nbmps * 6 - 3;
 
- /*     ==== Create and chase chains of NBMPS bulges ==== */
 
-     i__1 = *kbot - 2;
 
-     i__2 = nbmps * 3 - 2;
 
-     for (incol = (1 - nbmps) * 3 + *ktop - 1; i__2 < 0 ? incol >= i__1 : 
 
- 	    incol <= i__1; incol += i__2) {
 
- 	ndcol = incol + kdu;
 
- 	if (accum) {
 
- 	    _starpu_dlaset_("ALL", &kdu, &kdu, &c_b7, &c_b8, &u[u_offset], ldu);
 
- 	}
 
- /*        ==== Near-the-diagonal bulge chase.  The following loop */
 
- /*        .    performs the near-the-diagonal part of a small bulge */
 
- /*        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal */
 
- /*        .    chunk extends from column INCOL to column NDCOL */
 
- /*        .    (including both column INCOL and column NDCOL). The */
 
- /*        .    following loop chases a 3*NBMPS column long chain of */
 
- /*        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL */
 
- /*        .    may be less than KTOP and and NDCOL may be greater than */
 
- /*        .    KBOT indicating phantom columns from which to chase */
 
- /*        .    bulges before they are actually introduced or to which */
 
- /*        .    to chase bulges beyond column KBOT.)  ==== */
 
- /* Computing MIN */
 
- 	i__4 = incol + nbmps * 3 - 3, i__5 = *kbot - 2;
 
- 	i__3 = min(i__4,i__5);
 
- 	for (krcol = incol; krcol <= i__3; ++krcol) {
 
- /*           ==== Bulges number MTOP to MBOT are active double implicit */
 
- /*           .    shift bulges.  There may or may not also be small */
 
- /*           .    2-by-2 bulge, if there is room.  The inactive bulges */
 
- /*           .    (if any) must wait until the active bulges have moved */
 
- /*           .    down the diagonal to make room.  The phantom matrix */
 
- /*           .    paradigm described above helps keep track.  ==== */
 
- /* Computing MAX */
 
- 	    i__4 = 1, i__5 = (*ktop - 1 - krcol + 2) / 3 + 1;
 
- 	    mtop = max(i__4,i__5);
 
- /* Computing MIN */
 
- 	    i__4 = nbmps, i__5 = (*kbot - krcol) / 3;
 
- 	    mbot = min(i__4,i__5);
 
- 	    m22 = mbot + 1;
 
- 	    bmp22 = mbot < nbmps && krcol + (m22 - 1) * 3 == *kbot - 2;
 
- /*           ==== Generate reflections to chase the chain right */
 
- /*           .    one column.  (The minimum value of K is KTOP-1.) ==== */
 
- 	    i__4 = mbot;
 
- 	    for (m = mtop; m <= i__4; ++m) {
 
- 		k = krcol + (m - 1) * 3;
 
- 		if (k == *ktop - 1) {
 
- 		    _starpu_dlaqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &sr[(m 
 
- 			    << 1) - 1], &si[(m << 1) - 1], &sr[m * 2], &si[m *
 
- 			     2], &v[m * v_dim1 + 1]);
 
- 		    alpha = v[m * v_dim1 + 1];
 
- 		    _starpu_dlarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m * 
 
- 			    v_dim1 + 1]);
 
- 		} else {
 
- 		    beta = h__[k + 1 + k * h_dim1];
 
- 		    v[m * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
 
- 		    v[m * v_dim1 + 3] = h__[k + 3 + k * h_dim1];
 
- 		    _starpu_dlarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m * 
 
- 			    v_dim1 + 1]);
 
- /*                 ==== A Bulge may collapse because of vigilant */
 
- /*                 .    deflation or destructive underflow.  In the */
 
- /*                 .    underflow case, try the two-small-subdiagonals */
 
- /*                 .    trick to try to reinflate the bulge.  ==== */
 
- 		    if (h__[k + 3 + k * h_dim1] != 0. || h__[k + 3 + (k + 1) *
 
- 			     h_dim1] != 0. || h__[k + 3 + (k + 2) * h_dim1] ==
 
- 			     0.) {
 
- /*                    ==== Typical case: not collapsed (yet). ==== */
 
- 			h__[k + 1 + k * h_dim1] = beta;
 
- 			h__[k + 2 + k * h_dim1] = 0.;
 
- 			h__[k + 3 + k * h_dim1] = 0.;
 
- 		    } else {
 
- /*                    ==== Atypical case: collapsed.  Attempt to */
 
- /*                    .    reintroduce ignoring H(K+1,K) and H(K+2,K). */
 
- /*                    .    If the fill resulting from the new */
 
- /*                    .    reflector is too large, then abandon it. */
 
- /*                    .    Otherwise, use the new one. ==== */
 
- 			_starpu_dlaqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
 
- 				sr[(m << 1) - 1], &si[(m << 1) - 1], &sr[m * 
 
- 				2], &si[m * 2], vt);
 
- 			alpha = vt[0];
 
- 			_starpu_dlarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
 
- 			refsum = vt[0] * (h__[k + 1 + k * h_dim1] + vt[1] * 
 
- 				h__[k + 2 + k * h_dim1]);
 
- 			if ((d__1 = h__[k + 2 + k * h_dim1] - refsum * vt[1], 
 
- 				abs(d__1)) + (d__2 = refsum * vt[2], abs(d__2)
 
- 				) > ulp * ((d__3 = h__[k + k * h_dim1], abs(
 
- 				d__3)) + (d__4 = h__[k + 1 + (k + 1) * h_dim1]
 
- 				, abs(d__4)) + (d__5 = h__[k + 2 + (k + 2) * 
 
- 				h_dim1], abs(d__5)))) {
 
- /*                       ==== Starting a new bulge here would */
 
- /*                       .    create non-negligible fill.  Use */
 
- /*                       .    the old one with trepidation. ==== */
 
- 			    h__[k + 1 + k * h_dim1] = beta;
 
- 			    h__[k + 2 + k * h_dim1] = 0.;
 
- 			    h__[k + 3 + k * h_dim1] = 0.;
 
- 			} else {
 
- /*                       ==== Stating a new bulge here would */
 
- /*                       .    create only negligible fill. */
 
- /*                       .    Replace the old reflector with */
 
- /*                       .    the new one. ==== */
 
- 			    h__[k + 1 + k * h_dim1] -= refsum;
 
- 			    h__[k + 2 + k * h_dim1] = 0.;
 
- 			    h__[k + 3 + k * h_dim1] = 0.;
 
- 			    v[m * v_dim1 + 1] = vt[0];
 
- 			    v[m * v_dim1 + 2] = vt[1];
 
- 			    v[m * v_dim1 + 3] = vt[2];
 
- 			}
 
- 		    }
 
- 		}
 
- /* L20: */
 
- 	    }
 
- /*           ==== Generate a 2-by-2 reflection, if needed. ==== */
 
- 	    k = krcol + (m22 - 1) * 3;
 
- 	    if (bmp22) {
 
- 		if (k == *ktop - 1) {
 
- 		    _starpu_dlaqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &sr[(
 
- 			    m22 << 1) - 1], &si[(m22 << 1) - 1], &sr[m22 * 2], 
 
- 			     &si[m22 * 2], &v[m22 * v_dim1 + 1]);
 
- 		    beta = v[m22 * v_dim1 + 1];
 
- 		    _starpu_dlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22 
 
- 			    * v_dim1 + 1]);
 
- 		} else {
 
- 		    beta = h__[k + 1 + k * h_dim1];
 
- 		    v[m22 * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
 
- 		    _starpu_dlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22 
 
- 			    * v_dim1 + 1]);
 
- 		    h__[k + 1 + k * h_dim1] = beta;
 
- 		    h__[k + 2 + k * h_dim1] = 0.;
 
- 		}
 
- 	    }
 
- /*           ==== Multiply H by reflections from the left ==== */
 
- 	    if (accum) {
 
- 		jbot = min(ndcol,*kbot);
 
- 	    } else if (*wantt) {
 
- 		jbot = *n;
 
- 	    } else {
 
- 		jbot = *kbot;
 
- 	    }
 
- 	    i__4 = jbot;
 
- 	    for (j = max(*ktop,krcol); j <= i__4; ++j) {
 
- /* Computing MIN */
 
- 		i__5 = mbot, i__6 = (j - krcol + 2) / 3;
 
- 		mend = min(i__5,i__6);
 
- 		i__5 = mend;
 
- 		for (m = mtop; m <= i__5; ++m) {
 
- 		    k = krcol + (m - 1) * 3;
 
- 		    refsum = v[m * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + v[
 
- 			    m * v_dim1 + 2] * h__[k + 2 + j * h_dim1] + v[m * 
 
- 			    v_dim1 + 3] * h__[k + 3 + j * h_dim1]);
 
- 		    h__[k + 1 + j * h_dim1] -= refsum;
 
- 		    h__[k + 2 + j * h_dim1] -= refsum * v[m * v_dim1 + 2];
 
- 		    h__[k + 3 + j * h_dim1] -= refsum * v[m * v_dim1 + 3];
 
- /* L30: */
 
- 		}
 
- /* L40: */
 
- 	    }
 
- 	    if (bmp22) {
 
- 		k = krcol + (m22 - 1) * 3;
 
- /* Computing MAX */
 
- 		i__4 = k + 1;
 
- 		i__5 = jbot;
 
- 		for (j = max(i__4,*ktop); j <= i__5; ++j) {
 
- 		    refsum = v[m22 * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + 
 
- 			    v[m22 * v_dim1 + 2] * h__[k + 2 + j * h_dim1]);
 
- 		    h__[k + 1 + j * h_dim1] -= refsum;
 
- 		    h__[k + 2 + j * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
 
- /* L50: */
 
- 		}
 
- 	    }
 
- /*           ==== Multiply H by reflections from the right. */
 
- /*           .    Delay filling in the last row until the */
 
- /*           .    vigilant deflation check is complete. ==== */
 
- 	    if (accum) {
 
- 		jtop = max(*ktop,incol);
 
- 	    } else if (*wantt) {
 
- 		jtop = 1;
 
- 	    } else {
 
- 		jtop = *ktop;
 
- 	    }
 
- 	    i__5 = mbot;
 
- 	    for (m = mtop; m <= i__5; ++m) {
 
- 		if (v[m * v_dim1 + 1] != 0.) {
 
- 		    k = krcol + (m - 1) * 3;
 
- /* Computing MIN */
 
- 		    i__6 = *kbot, i__7 = k + 3;
 
- 		    i__4 = min(i__6,i__7);
 
- 		    for (j = jtop; j <= i__4; ++j) {
 
- 			refsum = v[m * v_dim1 + 1] * (h__[j + (k + 1) * 
 
- 				h_dim1] + v[m * v_dim1 + 2] * h__[j + (k + 2) 
 
- 				* h_dim1] + v[m * v_dim1 + 3] * h__[j + (k + 
 
- 				3) * h_dim1]);
 
- 			h__[j + (k + 1) * h_dim1] -= refsum;
 
- 			h__[j + (k + 2) * h_dim1] -= refsum * v[m * v_dim1 + 
 
- 				2];
 
- 			h__[j + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 + 
 
- 				3];
 
- /* L60: */
 
- 		    }
 
- 		    if (accum) {
 
- /*                    ==== Accumulate U. (If necessary, update Z later */
 
- /*                    .    with with an efficient matrix-matrix */
 
- /*                    .    multiply.) ==== */
 
- 			kms = k - incol;
 
- /* Computing MAX */
 
- 			i__4 = 1, i__6 = *ktop - incol;
 
- 			i__7 = kdu;
 
- 			for (j = max(i__4,i__6); j <= i__7; ++j) {
 
- 			    refsum = v[m * v_dim1 + 1] * (u[j + (kms + 1) * 
 
- 				    u_dim1] + v[m * v_dim1 + 2] * u[j + (kms 
 
- 				    + 2) * u_dim1] + v[m * v_dim1 + 3] * u[j 
 
- 				    + (kms + 3) * u_dim1]);
 
- 			    u[j + (kms + 1) * u_dim1] -= refsum;
 
- 			    u[j + (kms + 2) * u_dim1] -= refsum * v[m * 
 
- 				    v_dim1 + 2];
 
- 			    u[j + (kms + 3) * u_dim1] -= refsum * v[m * 
 
- 				    v_dim1 + 3];
 
- /* L70: */
 
- 			}
 
- 		    } else if (*wantz) {
 
- /*                    ==== U is not accumulated, so update Z */
 
- /*                    .    now by multiplying by reflections */
 
- /*                    .    from the right. ==== */
 
- 			i__7 = *ihiz;
 
- 			for (j = *iloz; j <= i__7; ++j) {
 
- 			    refsum = v[m * v_dim1 + 1] * (z__[j + (k + 1) * 
 
- 				    z_dim1] + v[m * v_dim1 + 2] * z__[j + (k 
 
- 				    + 2) * z_dim1] + v[m * v_dim1 + 3] * z__[
 
- 				    j + (k + 3) * z_dim1]);
 
- 			    z__[j + (k + 1) * z_dim1] -= refsum;
 
- 			    z__[j + (k + 2) * z_dim1] -= refsum * v[m * 
 
- 				    v_dim1 + 2];
 
- 			    z__[j + (k + 3) * z_dim1] -= refsum * v[m * 
 
- 				    v_dim1 + 3];
 
- /* L80: */
 
- 			}
 
- 		    }
 
- 		}
 
- /* L90: */
 
- 	    }
 
- /*           ==== Special case: 2-by-2 reflection (if needed) ==== */
 
- 	    k = krcol + (m22 - 1) * 3;
 
- 	    if (bmp22 && v[m22 * v_dim1 + 1] != 0.) {
 
- /* Computing MIN */
 
- 		i__7 = *kbot, i__4 = k + 3;
 
- 		i__5 = min(i__7,i__4);
 
- 		for (j = jtop; j <= i__5; ++j) {
 
- 		    refsum = v[m22 * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1] 
 
- 			    + v[m22 * v_dim1 + 2] * h__[j + (k + 2) * h_dim1])
 
- 			    ;
 
- 		    h__[j + (k + 1) * h_dim1] -= refsum;
 
- 		    h__[j + (k + 2) * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
 
- /* L100: */
 
- 		}
 
- 		if (accum) {
 
- 		    kms = k - incol;
 
- /* Computing MAX */
 
- 		    i__5 = 1, i__7 = *ktop - incol;
 
- 		    i__4 = kdu;
 
- 		    for (j = max(i__5,i__7); j <= i__4; ++j) {
 
- 			refsum = v[m22 * v_dim1 + 1] * (u[j + (kms + 1) * 
 
- 				u_dim1] + v[m22 * v_dim1 + 2] * u[j + (kms + 
 
- 				2) * u_dim1]);
 
- 			u[j + (kms + 1) * u_dim1] -= refsum;
 
- 			u[j + (kms + 2) * u_dim1] -= refsum * v[m22 * v_dim1 
 
- 				+ 2];
 
- /* L110: */
 
- 		    }
 
- 		} else if (*wantz) {
 
- 		    i__4 = *ihiz;
 
- 		    for (j = *iloz; j <= i__4; ++j) {
 
- 			refsum = v[m22 * v_dim1 + 1] * (z__[j + (k + 1) * 
 
- 				z_dim1] + v[m22 * v_dim1 + 2] * z__[j + (k + 
 
- 				2) * z_dim1]);
 
- 			z__[j + (k + 1) * z_dim1] -= refsum;
 
- 			z__[j + (k + 2) * z_dim1] -= refsum * v[m22 * v_dim1 
 
- 				+ 2];
 
- /* L120: */
 
- 		    }
 
- 		}
 
- 	    }
 
- /*           ==== Vigilant deflation check ==== */
 
- 	    mstart = mtop;
 
- 	    if (krcol + (mstart - 1) * 3 < *ktop) {
 
- 		++mstart;
 
- 	    }
 
- 	    mend = mbot;
 
- 	    if (bmp22) {
 
- 		++mend;
 
- 	    }
 
- 	    if (krcol == *kbot - 2) {
 
- 		++mend;
 
- 	    }
 
- 	    i__4 = mend;
 
- 	    for (m = mstart; m <= i__4; ++m) {
 
- /* Computing MIN */
 
- 		i__5 = *kbot - 1, i__7 = krcol + (m - 1) * 3;
 
- 		k = min(i__5,i__7);
 
- /*              ==== The following convergence test requires that */
 
- /*              .    the tradition small-compared-to-nearby-diagonals */
 
- /*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997) */
 
- /*              .    criteria both be satisfied.  The latter improves */
 
- /*              .    accuracy in some examples. Falling back on an */
 
- /*              .    alternate convergence criterion when TST1 or TST2 */
 
- /*              .    is zero (as done here) is traditional but probably */
 
- /*              .    unnecessary. ==== */
 
- 		if (h__[k + 1 + k * h_dim1] != 0.) {
 
- 		    tst1 = (d__1 = h__[k + k * h_dim1], abs(d__1)) + (d__2 = 
 
- 			    h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
 
- 		    if (tst1 == 0.) {
 
- 			if (k >= *ktop + 1) {
 
- 			    tst1 += (d__1 = h__[k + (k - 1) * h_dim1], abs(
 
- 				    d__1));
 
- 			}
 
- 			if (k >= *ktop + 2) {
 
- 			    tst1 += (d__1 = h__[k + (k - 2) * h_dim1], abs(
 
- 				    d__1));
 
- 			}
 
- 			if (k >= *ktop + 3) {
 
- 			    tst1 += (d__1 = h__[k + (k - 3) * h_dim1], abs(
 
- 				    d__1));
 
- 			}
 
- 			if (k <= *kbot - 2) {
 
- 			    tst1 += (d__1 = h__[k + 2 + (k + 1) * h_dim1], 
 
- 				    abs(d__1));
 
- 			}
 
- 			if (k <= *kbot - 3) {
 
- 			    tst1 += (d__1 = h__[k + 3 + (k + 1) * h_dim1], 
 
- 				    abs(d__1));
 
- 			}
 
- 			if (k <= *kbot - 4) {
 
- 			    tst1 += (d__1 = h__[k + 4 + (k + 1) * h_dim1], 
 
- 				    abs(d__1));
 
- 			}
 
- 		    }
 
- /* Computing MAX */
 
- 		    d__2 = smlnum, d__3 = ulp * tst1;
 
- 		    if ((d__1 = h__[k + 1 + k * h_dim1], abs(d__1)) <= max(
 
- 			    d__2,d__3)) {
 
- /* Computing MAX */
 
- 			d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)), 
 
- 				d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs(
 
- 				d__2));
 
- 			h12 = max(d__3,d__4);
 
- /* Computing MIN */
 
- 			d__3 = (d__1 = h__[k + 1 + k * h_dim1], abs(d__1)), 
 
- 				d__4 = (d__2 = h__[k + (k + 1) * h_dim1], abs(
 
- 				d__2));
 
- 			h21 = min(d__3,d__4);
 
- /* Computing MAX */
 
- 			d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
 
- 				d__1)), d__4 = (d__2 = h__[k + k * h_dim1] - 
 
- 				h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
 
- 			h11 = max(d__3,d__4);
 
- /* Computing MIN */
 
- 			d__3 = (d__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
 
- 				d__1)), d__4 = (d__2 = h__[k + k * h_dim1] - 
 
- 				h__[k + 1 + (k + 1) * h_dim1], abs(d__2));
 
- 			h22 = min(d__3,d__4);
 
- 			scl = h11 + h12;
 
- 			tst2 = h22 * (h11 / scl);
 
- /* Computing MAX */
 
- 			d__1 = smlnum, d__2 = ulp * tst2;
 
- 			if (tst2 == 0. || h21 * (h12 / scl) <= max(d__1,d__2))
 
- 				 {
 
- 			    h__[k + 1 + k * h_dim1] = 0.;
 
- 			}
 
- 		    }
 
- 		}
 
- /* L130: */
 
- 	    }
 
- /*           ==== Fill in the last row of each bulge. ==== */
 
- /* Computing MIN */
 
- 	    i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 3;
 
- 	    mend = min(i__4,i__5);
 
- 	    i__4 = mend;
 
- 	    for (m = mtop; m <= i__4; ++m) {
 
- 		k = krcol + (m - 1) * 3;
 
- 		refsum = v[m * v_dim1 + 1] * v[m * v_dim1 + 3] * h__[k + 4 + (
 
- 			k + 3) * h_dim1];
 
- 		h__[k + 4 + (k + 1) * h_dim1] = -refsum;
 
- 		h__[k + 4 + (k + 2) * h_dim1] = -refsum * v[m * v_dim1 + 2];
 
- 		h__[k + 4 + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 + 3];
 
- /* L140: */
 
- 	    }
 
- /*           ==== End of near-the-diagonal bulge chase. ==== */
 
- /* L150: */
 
- 	}
 
- /*        ==== Use U (if accumulated) to update far-from-diagonal */
 
- /*        .    entries in H.  If required, use U to update Z as */
 
- /*        .    well. ==== */
 
- 	if (accum) {
 
- 	    if (*wantt) {
 
- 		jtop = 1;
 
- 		jbot = *n;
 
- 	    } else {
 
- 		jtop = *ktop;
 
- 		jbot = *kbot;
 
- 	    }
 
- 	    if (! blk22 || incol < *ktop || ndcol > *kbot || ns <= 2) {
 
- /*              ==== Updates not exploiting the 2-by-2 block */
 
- /*              .    structure of U.  K1 and NU keep track of */
 
- /*              .    the location and size of U in the special */
 
- /*              .    cases of introducing bulges and chasing */
 
- /*              .    bulges off the bottom.  In these special */
 
- /*              .    cases and in case the number of shifts */
 
- /*              .    is NS = 2, there is no 2-by-2 block */
 
- /*              .    structure to exploit.  ==== */
 
- /* Computing MAX */
 
- 		i__3 = 1, i__4 = *ktop - incol;
 
- 		k1 = max(i__3,i__4);
 
- /* Computing MAX */
 
- 		i__3 = 0, i__4 = ndcol - *kbot;
 
- 		nu = kdu - max(i__3,i__4) - k1 + 1;
 
- /*              ==== Horizontal Multiply ==== */
 
- 		i__3 = jbot;
 
- 		i__4 = *nh;
 
- 		for (jcol = min(ndcol,*kbot) + 1; i__4 < 0 ? jcol >= i__3 : 
 
- 			jcol <= i__3; jcol += i__4) {
 
- /* Computing MIN */
 
- 		    i__5 = *nh, i__7 = jbot - jcol + 1;
 
- 		    jlen = min(i__5,i__7);
 
- 		    _starpu_dgemm_("C", "N", &nu, &jlen, &nu, &c_b8, &u[k1 + k1 * 
 
- 			    u_dim1], ldu, &h__[incol + k1 + jcol * h_dim1], 
 
- 			    ldh, &c_b7, &wh[wh_offset], ldwh);
 
- 		    _starpu_dlacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[
 
- 			    incol + k1 + jcol * h_dim1], ldh);
 
- /* L160: */
 
- 		}
 
- /*              ==== Vertical multiply ==== */
 
- 		i__4 = max(*ktop,incol) - 1;
 
- 		i__3 = *nv;
 
- 		for (jrow = jtop; i__3 < 0 ? jrow >= i__4 : jrow <= i__4; 
 
- 			jrow += i__3) {
 
- /* Computing MIN */
 
- 		    i__5 = *nv, i__7 = max(*ktop,incol) - jrow;
 
- 		    jlen = min(i__5,i__7);
 
- 		    _starpu_dgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &h__[jrow + (
 
- 			    incol + k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], 
 
- 			    ldu, &c_b7, &wv[wv_offset], ldwv);
 
- 		    _starpu_dlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[
 
- 			    jrow + (incol + k1) * h_dim1], ldh);
 
- /* L170: */
 
- 		}
 
- /*              ==== Z multiply (also vertical) ==== */
 
- 		if (*wantz) {
 
- 		    i__3 = *ihiz;
 
- 		    i__4 = *nv;
 
- 		    for (jrow = *iloz; i__4 < 0 ? jrow >= i__3 : jrow <= i__3;
 
- 			     jrow += i__4) {
 
- /* Computing MIN */
 
- 			i__5 = *nv, i__7 = *ihiz - jrow + 1;
 
- 			jlen = min(i__5,i__7);
 
- 			_starpu_dgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &z__[jrow + (
 
- 				incol + k1) * z_dim1], ldz, &u[k1 + k1 * 
 
- 				u_dim1], ldu, &c_b7, &wv[wv_offset], ldwv);
 
- 			_starpu_dlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
 
- 				jrow + (incol + k1) * z_dim1], ldz)
 
- 				;
 
- /* L180: */
 
- 		    }
 
- 		}
 
- 	    } else {
 
- /*              ==== Updates exploiting U's 2-by-2 block structure. */
 
- /*              .    (I2, I4, J2, J4 are the last rows and columns */
 
- /*              .    of the blocks.) ==== */
 
- 		i2 = (kdu + 1) / 2;
 
- 		i4 = kdu;
 
- 		j2 = i4 - i2;
 
- 		j4 = kdu;
 
- /*              ==== KZS and KNZ deal with the band of zeros */
 
- /*              .    along the diagonal of one of the triangular */
 
- /*              .    blocks. ==== */
 
- 		kzs = j4 - j2 - (ns + 1);
 
- 		knz = ns + 1;
 
- /*              ==== Horizontal multiply ==== */
 
- 		i__4 = jbot;
 
- 		i__3 = *nh;
 
- 		for (jcol = min(ndcol,*kbot) + 1; i__3 < 0 ? jcol >= i__4 : 
 
- 			jcol <= i__4; jcol += i__3) {
 
- /* Computing MIN */
 
- 		    i__5 = *nh, i__7 = jbot - jcol + 1;
 
- 		    jlen = min(i__5,i__7);
 
- /*                 ==== Copy bottom of H to top+KZS of scratch ==== */
 
- /*                  (The first KZS rows get multiplied by zero.) ==== */
 
- 		    _starpu_dlacpy_("ALL", &knz, &jlen, &h__[incol + 1 + j2 + jcol * 
 
- 			    h_dim1], ldh, &wh[kzs + 1 + wh_dim1], ldwh);
 
- /*                 ==== Multiply by U21' ==== */
 
- 		    _starpu_dlaset_("ALL", &kzs, &jlen, &c_b7, &c_b7, &wh[wh_offset], 
 
- 			    ldwh);
 
- 		    _starpu_dtrmm_("L", "U", "C", "N", &knz, &jlen, &c_b8, &u[j2 + 1 
 
- 			    + (kzs + 1) * u_dim1], ldu, &wh[kzs + 1 + wh_dim1]
 
- , ldwh);
 
- /*                 ==== Multiply top of H by U11' ==== */
 
- 		    _starpu_dgemm_("C", "N", &i2, &jlen, &j2, &c_b8, &u[u_offset], 
 
- 			    ldu, &h__[incol + 1 + jcol * h_dim1], ldh, &c_b8, 
 
- 			    &wh[wh_offset], ldwh);
 
- /*                 ==== Copy top of H to bottom of WH ==== */
 
- 		    _starpu_dlacpy_("ALL", &j2, &jlen, &h__[incol + 1 + jcol * h_dim1]
 
- , ldh, &wh[i2 + 1 + wh_dim1], ldwh);
 
- /*                 ==== Multiply by U21' ==== */
 
- 		    _starpu_dtrmm_("L", "L", "C", "N", &j2, &jlen, &c_b8, &u[(i2 + 1) 
 
- 			    * u_dim1 + 1], ldu, &wh[i2 + 1 + wh_dim1], ldwh);
 
- /*                 ==== Multiply by U22 ==== */
 
- 		    i__5 = i4 - i2;
 
- 		    i__7 = j4 - j2;
 
- 		    _starpu_dgemm_("C", "N", &i__5, &jlen, &i__7, &c_b8, &u[j2 + 1 + (
 
- 			    i2 + 1) * u_dim1], ldu, &h__[incol + 1 + j2 + 
 
- 			    jcol * h_dim1], ldh, &c_b8, &wh[i2 + 1 + wh_dim1], 
 
- 			     ldwh);
 
- /*                 ==== Copy it back ==== */
 
- 		    _starpu_dlacpy_("ALL", &kdu, &jlen, &wh[wh_offset], ldwh, &h__[
 
- 			    incol + 1 + jcol * h_dim1], ldh);
 
- /* L190: */
 
- 		}
 
- /*              ==== Vertical multiply ==== */
 
- 		i__3 = max(incol,*ktop) - 1;
 
- 		i__4 = *nv;
 
- 		for (jrow = jtop; i__4 < 0 ? jrow >= i__3 : jrow <= i__3; 
 
- 			jrow += i__4) {
 
- /* Computing MIN */
 
- 		    i__5 = *nv, i__7 = max(incol,*ktop) - jrow;
 
- 		    jlen = min(i__5,i__7);
 
- /*                 ==== Copy right of H to scratch (the first KZS */
 
- /*                 .    columns get multiplied by zero) ==== */
 
- 		    _starpu_dlacpy_("ALL", &jlen, &knz, &h__[jrow + (incol + 1 + j2) *
 
- 			     h_dim1], ldh, &wv[(kzs + 1) * wv_dim1 + 1], ldwv);
 
- /*                 ==== Multiply by U21 ==== */
 
- 		    _starpu_dlaset_("ALL", &jlen, &kzs, &c_b7, &c_b7, &wv[wv_offset], 
 
- 			    ldwv);
 
- 		    _starpu_dtrmm_("R", "U", "N", "N", &jlen, &knz, &c_b8, &u[j2 + 1 
 
- 			    + (kzs + 1) * u_dim1], ldu, &wv[(kzs + 1) * 
 
- 			    wv_dim1 + 1], ldwv);
 
- /*                 ==== Multiply by U11 ==== */
 
- 		    _starpu_dgemm_("N", "N", &jlen, &i2, &j2, &c_b8, &h__[jrow + (
 
- 			    incol + 1) * h_dim1], ldh, &u[u_offset], ldu, &
 
- 			    c_b8, &wv[wv_offset], ldwv);
 
- /*                 ==== Copy left of H to right of scratch ==== */
 
- 		    _starpu_dlacpy_("ALL", &jlen, &j2, &h__[jrow + (incol + 1) * 
 
- 			    h_dim1], ldh, &wv[(i2 + 1) * wv_dim1 + 1], ldwv);
 
- /*                 ==== Multiply by U21 ==== */
 
- 		    i__5 = i4 - i2;
 
- 		    _starpu_dtrmm_("R", "L", "N", "N", &jlen, &i__5, &c_b8, &u[(i2 + 
 
- 			    1) * u_dim1 + 1], ldu, &wv[(i2 + 1) * wv_dim1 + 1]
 
- , ldwv);
 
- /*                 ==== Multiply by U22 ==== */
 
- 		    i__5 = i4 - i2;
 
- 		    i__7 = j4 - j2;
 
- 		    _starpu_dgemm_("N", "N", &jlen, &i__5, &i__7, &c_b8, &h__[jrow + (
 
- 			    incol + 1 + j2) * h_dim1], ldh, &u[j2 + 1 + (i2 + 
 
- 			    1) * u_dim1], ldu, &c_b8, &wv[(i2 + 1) * wv_dim1 
 
- 			    + 1], ldwv);
 
- /*                 ==== Copy it back ==== */
 
- 		    _starpu_dlacpy_("ALL", &jlen, &kdu, &wv[wv_offset], ldwv, &h__[
 
- 			    jrow + (incol + 1) * h_dim1], ldh);
 
- /* L200: */
 
- 		}
 
- /*              ==== Multiply Z (also vertical) ==== */
 
- 		if (*wantz) {
 
- 		    i__4 = *ihiz;
 
- 		    i__3 = *nv;
 
- 		    for (jrow = *iloz; i__3 < 0 ? jrow >= i__4 : jrow <= i__4;
 
- 			     jrow += i__3) {
 
- /* Computing MIN */
 
- 			i__5 = *nv, i__7 = *ihiz - jrow + 1;
 
- 			jlen = min(i__5,i__7);
 
- /*                    ==== Copy right of Z to left of scratch (first */
 
- /*                    .     KZS columns get multiplied by zero) ==== */
 
- 			_starpu_dlacpy_("ALL", &jlen, &knz, &z__[jrow + (incol + 1 + 
 
- 				j2) * z_dim1], ldz, &wv[(kzs + 1) * wv_dim1 + 
 
- 				1], ldwv);
 
- /*                    ==== Multiply by U12 ==== */
 
- 			_starpu_dlaset_("ALL", &jlen, &kzs, &c_b7, &c_b7, &wv[
 
- 				wv_offset], ldwv);
 
- 			_starpu_dtrmm_("R", "U", "N", "N", &jlen, &knz, &c_b8, &u[j2 
 
- 				+ 1 + (kzs + 1) * u_dim1], ldu, &wv[(kzs + 1) 
 
- 				* wv_dim1 + 1], ldwv);
 
- /*                    ==== Multiply by U11 ==== */
 
- 			_starpu_dgemm_("N", "N", &jlen, &i2, &j2, &c_b8, &z__[jrow + (
 
- 				incol + 1) * z_dim1], ldz, &u[u_offset], ldu, 
 
- 				&c_b8, &wv[wv_offset], ldwv);
 
- /*                    ==== Copy left of Z to right of scratch ==== */
 
- 			_starpu_dlacpy_("ALL", &jlen, &j2, &z__[jrow + (incol + 1) * 
 
- 				z_dim1], ldz, &wv[(i2 + 1) * wv_dim1 + 1], 
 
- 				ldwv);
 
- /*                    ==== Multiply by U21 ==== */
 
- 			i__5 = i4 - i2;
 
- 			_starpu_dtrmm_("R", "L", "N", "N", &jlen, &i__5, &c_b8, &u[(
 
- 				i2 + 1) * u_dim1 + 1], ldu, &wv[(i2 + 1) * 
 
- 				wv_dim1 + 1], ldwv);
 
- /*                    ==== Multiply by U22 ==== */
 
- 			i__5 = i4 - i2;
 
- 			i__7 = j4 - j2;
 
- 			_starpu_dgemm_("N", "N", &jlen, &i__5, &i__7, &c_b8, &z__[
 
- 				jrow + (incol + 1 + j2) * z_dim1], ldz, &u[j2 
 
- 				+ 1 + (i2 + 1) * u_dim1], ldu, &c_b8, &wv[(i2 
 
- 				+ 1) * wv_dim1 + 1], ldwv);
 
- /*                    ==== Copy the result back to Z ==== */
 
- 			_starpu_dlacpy_("ALL", &jlen, &kdu, &wv[wv_offset], ldwv, &
 
- 				z__[jrow + (incol + 1) * z_dim1], ldz);
 
- /* L210: */
 
- 		    }
 
- 		}
 
- 	    }
 
- 	}
 
- /* L220: */
 
-     }
 
- /*     ==== End of DLAQR5 ==== */
 
-     return 0;
 
- } /* _starpu_dlaqr5_ */
 
 
  |