cholesky_implicit.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2013 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include "cholesky.h"
  19. #include "../sched_ctx_utils/sched_ctx_utils.h"
  20. /*
  21. * Create the codelets
  22. */
  23. static struct starpu_codelet cl11 =
  24. {
  25. .where = STARPU_CPU|STARPU_CUDA,
  26. .type = STARPU_SEQ,
  27. .cpu_funcs = {chol_cpu_codelet_update_u11, NULL},
  28. #ifdef STARPU_USE_CUDA
  29. .cuda_funcs = {chol_cublas_codelet_update_u11, NULL},
  30. #elif defined(STARPU_SIMGRID)
  31. .cuda_funcs = {(void*)1, NULL},
  32. #endif
  33. .nbuffers = 1,
  34. .modes = {STARPU_RW},
  35. .model = &chol_model_11
  36. };
  37. static struct starpu_codelet cl21 =
  38. {
  39. .where = STARPU_CPU|STARPU_CUDA,
  40. .type = STARPU_SEQ,
  41. .cpu_funcs = {chol_cpu_codelet_update_u21, NULL},
  42. #ifdef STARPU_USE_CUDA
  43. .cuda_funcs = {chol_cublas_codelet_update_u21, NULL},
  44. #elif defined(STARPU_SIMGRID)
  45. .cuda_funcs = {(void*)1, NULL},
  46. #endif
  47. .nbuffers = 2,
  48. .modes = {STARPU_R, STARPU_RW},
  49. .model = &chol_model_21
  50. };
  51. static struct starpu_codelet cl22 =
  52. {
  53. .where = STARPU_CPU|STARPU_CUDA,
  54. .type = STARPU_SEQ,
  55. .max_parallelism = INT_MAX,
  56. .cpu_funcs = {chol_cpu_codelet_update_u22, NULL},
  57. #ifdef STARPU_USE_CUDA
  58. .cuda_funcs = {chol_cublas_codelet_update_u22, NULL},
  59. #elif defined(STARPU_SIMGRID)
  60. .cuda_funcs = {(void*)1, NULL},
  61. #endif
  62. .nbuffers = 3,
  63. .modes = {STARPU_R, STARPU_R, STARPU_RW},
  64. .model = &chol_model_22
  65. };
  66. /*
  67. * code to bootstrap the factorization
  68. * and construct the DAG
  69. */
  70. static void callback_turn_spmd_on(void *arg __attribute__ ((unused)))
  71. {
  72. cl22.type = STARPU_SPMD;
  73. }
  74. static int _cholesky(starpu_data_handle_t dataA, unsigned nblocks)
  75. {
  76. int ret;
  77. double start;
  78. double end;
  79. unsigned i,j,k;
  80. unsigned long n = starpu_matrix_get_nx(dataA);
  81. unsigned long nn = n/nblocks;
  82. int prio_level = noprio?STARPU_DEFAULT_PRIO:STARPU_MAX_PRIO;
  83. start = starpu_timing_now();
  84. if (bound)
  85. starpu_bound_start(bound_deps, 0);
  86. /* create all the DAG nodes */
  87. for (k = 0; k < nblocks; k++)
  88. {
  89. starpu_data_handle_t sdatakk = starpu_data_get_sub_data(dataA, 2, k, k);
  90. ret = starpu_insert_task(&cl11,
  91. STARPU_PRIORITY, prio_level,
  92. STARPU_RW, sdatakk,
  93. STARPU_CALLBACK, (k == 3*nblocks/4)?callback_turn_spmd_on:NULL,
  94. STARPU_FLOPS, (double) FLOPS_SPOTRF(nn),
  95. 0);
  96. if (ret == -ENODEV) return 77;
  97. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  98. for (j = k+1; j<nblocks; j++)
  99. {
  100. starpu_data_handle_t sdatakj = starpu_data_get_sub_data(dataA, 2, k, j);
  101. ret = starpu_insert_task(&cl21,
  102. STARPU_PRIORITY, (j == k+1)?prio_level:STARPU_DEFAULT_PRIO,
  103. STARPU_R, sdatakk,
  104. STARPU_RW, sdatakj,
  105. STARPU_FLOPS, (double) FLOPS_STRSM(nn, nn),
  106. 0);
  107. if (ret == -ENODEV) return 77;
  108. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  109. for (i = k+1; i<nblocks; i++)
  110. {
  111. if (i <= j)
  112. {
  113. starpu_data_handle_t sdataki = starpu_data_get_sub_data(dataA, 2, k, i);
  114. starpu_data_handle_t sdataij = starpu_data_get_sub_data(dataA, 2, i, j);
  115. ret = starpu_insert_task(&cl22,
  116. STARPU_PRIORITY, ((i == k+1) && (j == k+1))?prio_level:STARPU_DEFAULT_PRIO,
  117. STARPU_R, sdataki,
  118. STARPU_R, sdatakj,
  119. STARPU_RW, sdataij,
  120. STARPU_FLOPS, (double) FLOPS_SGEMM(nn, nn, nn),
  121. 0);
  122. if (ret == -ENODEV) return 77;
  123. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  124. }
  125. }
  126. }
  127. }
  128. starpu_task_wait_for_all();
  129. if (bound)
  130. starpu_bound_stop();
  131. end = starpu_timing_now();
  132. double timing = end - start;
  133. double flop = FLOPS_SPOTRF(n);
  134. if(with_ctxs || with_noctxs || chole1 || chole2)
  135. update_sched_ctx_timing_results((flop/timing/1000.0f), (timing/1000000.0f));
  136. else
  137. {
  138. FPRINTF(stderr, "Computation took (in ms)\n");
  139. FPRINTF(stdout, "%2.2f\n", timing/1000);
  140. FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  141. if (bound_lp)
  142. {
  143. FILE *f = fopen("cholesky.lp", "w");
  144. starpu_bound_print_lp(f);
  145. }
  146. if (bound)
  147. {
  148. double res;
  149. starpu_bound_compute(&res, NULL, 0);
  150. FPRINTF(stderr, "Theoretical GFlops: %2.2f\n", (flop/res/1000000.0f));
  151. }
  152. }
  153. return 0;
  154. }
  155. static int cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  156. {
  157. starpu_data_handle_t dataA;
  158. /* monitor and partition the A matrix into blocks :
  159. * one block is now determined by 2 unsigned (i,j) */
  160. starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(float));
  161. struct starpu_data_filter f =
  162. {
  163. .filter_func = starpu_vertical_block_filter_func,
  164. .nchildren = nblocks
  165. };
  166. struct starpu_data_filter f2 =
  167. {
  168. .filter_func = starpu_block_filter_func,
  169. .nchildren = nblocks
  170. };
  171. starpu_data_map_filters(dataA, 2, &f, &f2);
  172. int ret = _cholesky(dataA, nblocks);
  173. starpu_data_unpartition(dataA, 0);
  174. starpu_data_unregister(dataA);
  175. return ret;
  176. }
  177. static void execute_cholesky(unsigned size, unsigned nblocks)
  178. {
  179. int ret;
  180. float *mat = NULL;
  181. unsigned i,j;
  182. #ifndef STARPU_SIMGRID
  183. starpu_malloc((void **)&mat, (size_t)size*size*sizeof(float));
  184. for (i = 0; i < size; i++)
  185. {
  186. for (j = 0; j < size; j++)
  187. {
  188. mat[j +i*size] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  189. /* mat[j +i*size] = ((i == j)?1.0f*size:0.0f); */
  190. }
  191. }
  192. #endif
  193. /* #define PRINT_OUTPUT */
  194. #ifdef PRINT_OUTPUT
  195. FPRINTF(stdout, "Input :\n");
  196. for (j = 0; j < size; j++)
  197. {
  198. for (i = 0; i < size; i++)
  199. {
  200. if (i <= j)
  201. {
  202. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  203. }
  204. else
  205. {
  206. FPRINTF(stdout, ".\t");
  207. }
  208. }
  209. FPRINTF(stdout, "\n");
  210. }
  211. #endif
  212. ret = cholesky(mat, size, size, nblocks);
  213. #ifdef PRINT_OUTPUT
  214. FPRINTF(stdout, "Results :\n");
  215. for (j = 0; j < size; j++)
  216. {
  217. for (i = 0; i < size; i++)
  218. {
  219. if (i <= j)
  220. {
  221. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  222. }
  223. else
  224. {
  225. FPRINTF(stdout, ".\t");
  226. mat[j+i*size] = 0.0f; /* debug */
  227. }
  228. }
  229. FPRINTF(stdout, "\n");
  230. }
  231. #endif
  232. if (check)
  233. {
  234. FPRINTF(stderr, "compute explicit LLt ...\n");
  235. for (j = 0; j < size; j++)
  236. {
  237. for (i = 0; i < size; i++)
  238. {
  239. if (i > j)
  240. {
  241. mat[j+i*size] = 0.0f; /* debug */
  242. }
  243. }
  244. }
  245. float *test_mat = malloc(size*size*sizeof(float));
  246. STARPU_ASSERT(test_mat);
  247. SSYRK("L", "N", size, size, 1.0f,
  248. mat, size, 0.0f, test_mat, size);
  249. FPRINTF(stderr, "comparing results ...\n");
  250. #ifdef PRINT_OUTPUT
  251. for (j = 0; j < size; j++)
  252. {
  253. for (i = 0; i < size; i++)
  254. {
  255. if (i <= j)
  256. {
  257. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size]);
  258. }
  259. else
  260. {
  261. FPRINTF(stdout, ".\t");
  262. }
  263. }
  264. FPRINTF(stdout, "\n");
  265. }
  266. #endif
  267. for (j = 0; j < size; j++)
  268. {
  269. for (i = 0; i < size; i++)
  270. {
  271. if (i <= j)
  272. {
  273. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  274. float err = abs(test_mat[j +i*size] - orig);
  275. if (err > 0.00001)
  276. {
  277. FPRINTF(stderr, "Error[%u, %u] --> %2.2f != %2.2f (err %2.2f)\n", i, j, test_mat[j +i*size], orig, err);
  278. assert(0);
  279. }
  280. }
  281. }
  282. }
  283. free(test_mat);
  284. }
  285. starpu_free(mat);
  286. }
  287. int main(int argc, char **argv)
  288. {
  289. /* create a simple definite positive symetric matrix example
  290. *
  291. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  292. * */
  293. parse_args(argc, argv);
  294. if(with_ctxs || with_noctxs || chole1 || chole2)
  295. parse_args_ctx(argc, argv);
  296. int ret;
  297. ret = starpu_init(NULL);
  298. if (ret == -ENODEV)
  299. return 77;
  300. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  301. starpu_helper_cublas_init();
  302. if(with_ctxs)
  303. {
  304. construct_contexts(execute_cholesky);
  305. start_2benchs(execute_cholesky);
  306. }
  307. else if(with_noctxs)
  308. start_2benchs(execute_cholesky);
  309. else if(chole1)
  310. start_1stbench(execute_cholesky);
  311. else if(chole2)
  312. start_2ndbench(execute_cholesky);
  313. else
  314. execute_cholesky(size, nblocks);
  315. starpu_helper_cublas_shutdown();
  316. starpu_shutdown();
  317. return ret;
  318. }