| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 | 
							- /* dstevr.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__10 = 10;
 
- static integer c__1 = 1;
 
- static integer c__2 = 2;
 
- static integer c__3 = 3;
 
- static integer c__4 = 4;
 
- /* Subroutine */ int _starpu_dstevr_(char *jobz, char *range, integer *n, doublereal *
 
- 	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 
 
- 	integer *iu, doublereal *abstol, integer *m, doublereal *w, 
 
- 	doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 
 
- 	integer *lwork, integer *iwork, integer *liwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, jj;
 
-     doublereal eps, vll, vuu, tmp1;
 
-     integer imax;
 
-     doublereal rmin, rmax;
 
-     logical test;
 
-     doublereal tnrm;
 
-     integer itmp1;
 
-     extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     doublereal sigma;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     char order[1];
 
-     extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *);
 
-     integer lwmin;
 
-     logical wantz;
 
-     extern doublereal _starpu_dlamch_(char *);
 
-     logical alleig, indeig;
 
-     integer iscale, ieeeok, indibl, indifl;
 
-     logical valeig;
 
-     doublereal safmin;
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
 
-     doublereal bignum;
 
-     extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
 
-     integer indisp;
 
-     extern /* Subroutine */ int _starpu_dstein_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *, integer *), 
 
- 	    _starpu_dsterf_(integer *, doublereal *, doublereal *, integer *);
 
-     integer indiwo;
 
-     extern /* Subroutine */ int _starpu_dstebz_(char *, char *, integer *, doublereal 
 
- 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *, doublereal *, integer *, integer *), 
 
- 	    _starpu_dstemr_(char *, char *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, integer *, 
 
- 	    logical *, doublereal *, integer *, integer *, integer *, integer 
 
- 	    *);
 
-     integer liwmin;
 
-     logical tryrac;
 
-     integer nsplit;
 
-     doublereal smlnum;
 
-     logical lquery;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSTEVR computes selected eigenvalues and, optionally, eigenvectors */
 
- /*  of a real symmetric tridiagonal matrix T.  Eigenvalues and */
 
- /*  eigenvectors can be selected by specifying either a range of values */
 
- /*  or a range of indices for the desired eigenvalues. */
 
- /*  Whenever possible, DSTEVR calls DSTEMR to compute the */
 
- /*  eigenspectrum using Relatively Robust Representations.  DSTEMR */
 
- /*  computes eigenvalues by the dqds algorithm, while orthogonal */
 
- /*  eigenvectors are computed from various "good" L D L^T representations */
 
- /*  (also known as Relatively Robust Representations). Gram-Schmidt */
 
- /*  orthogonalization is avoided as far as possible. More specifically, */
 
- /*  the various steps of the algorithm are as follows. For the i-th */
 
- /*  unreduced block of T, */
 
- /*     (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */
 
- /*          is a relatively robust representation, */
 
- /*     (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */
 
- /*         relative accuracy by the dqds algorithm, */
 
- /*     (c) If there is a cluster of close eigenvalues, "choose" sigma_i */
 
- /*         close to the cluster, and go to step (a), */
 
- /*     (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */
 
- /*         compute the corresponding eigenvector by forming a */
 
- /*         rank-revealing twisted factorization. */
 
- /*  The desired accuracy of the output can be specified by the input */
 
- /*  parameter ABSTOL. */
 
- /*  For more details, see "A new O(n^2) algorithm for the symmetric */
 
- /*  tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */
 
- /*  Computer Science Division Technical Report No. UCB//CSD-97-971, */
 
- /*  UC Berkeley, May 1997. */
 
- /*  Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested */
 
- /*  on machines which conform to the ieee-754 floating point standard. */
 
- /*  DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and */
 
- /*  when partial spectrum requests are made. */
 
- /*  Normal execution of DSTEMR may create NaNs and infinities and */
 
- /*  hence may abort due to a floating point exception in environments */
 
- /*  which do not handle NaNs and infinities in the ieee standard default */
 
- /*  manner. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBZ    (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only; */
 
- /*          = 'V':  Compute eigenvalues and eigenvectors. */
 
- /*  RANGE   (input) CHARACTER*1 */
 
- /*          = 'A': all eigenvalues will be found. */
 
- /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 
- /*                 will be found. */
 
- /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
 
- /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
 
- /* ********* DSTEIN are called */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the n diagonal elements of the tridiagonal matrix */
 
- /*          A. */
 
- /*          On exit, D may be multiplied by a constant factor chosen */
 
- /*          to avoid over/underflow in computing the eigenvalues. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */
 
- /*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 
- /*          matrix A in elements 1 to N-1 of E. */
 
- /*          On exit, E may be multiplied by a constant factor chosen */
 
- /*          to avoid over/underflow in computing the eigenvalues. */
 
- /*  VL      (input) DOUBLE PRECISION */
 
- /*  VU      (input) DOUBLE PRECISION */
 
- /*          If RANGE='V', the lower and upper bounds of the interval to */
 
- /*          be searched for eigenvalues. VL < VU. */
 
- /*          Not referenced if RANGE = 'A' or 'I'. */
 
- /*  IL      (input) INTEGER */
 
- /*  IU      (input) INTEGER */
 
- /*          If RANGE='I', the indices (in ascending order) of the */
 
- /*          smallest and largest eigenvalues to be returned. */
 
- /*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 
- /*          Not referenced if RANGE = 'A' or 'V'. */
 
- /*  ABSTOL  (input) DOUBLE PRECISION */
 
- /*          The absolute error tolerance for the eigenvalues. */
 
- /*          An approximate eigenvalue is accepted as converged */
 
- /*          when it is determined to lie in an interval [a,b] */
 
- /*          of width less than or equal to */
 
- /*                  ABSTOL + EPS *   max( |a|,|b| ) , */
 
- /*          where EPS is the machine precision.  If ABSTOL is less than */
 
- /*          or equal to zero, then  EPS*|T|  will be used in its place, */
 
- /*          where |T| is the 1-norm of the tridiagonal matrix obtained */
 
- /*          by reducing A to tridiagonal form. */
 
- /*          See "Computing Small Singular Values of Bidiagonal Matrices */
 
- /*          with Guaranteed High Relative Accuracy," by Demmel and */
 
- /*          Kahan, LAPACK Working Note #3. */
 
- /*          If high relative accuracy is important, set ABSTOL to */
 
- /*          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that */
 
- /*          eigenvalues are computed to high relative accuracy when */
 
- /*          possible in future releases.  The current code does not */
 
- /*          make any guarantees about high relative accuracy, but */
 
- /*          future releases will. See J. Barlow and J. Demmel, */
 
- /*          "Computing Accurate Eigensystems of Scaled Diagonally */
 
- /*          Dominant Matrices", LAPACK Working Note #7, for a discussion */
 
- /*          of which matrices define their eigenvalues to high relative */
 
- /*          accuracy. */
 
- /*  M       (output) INTEGER */
 
- /*          The total number of eigenvalues found.  0 <= M <= N. */
 
- /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The first M elements contain the selected eigenvalues in */
 
- /*          ascending order. */
 
- /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
 
- /*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
 
- /*          contain the orthonormal eigenvectors of the matrix A */
 
- /*          corresponding to the selected eigenvalues, with the i-th */
 
- /*          column of Z holding the eigenvector associated with W(i). */
 
- /*          Note: the user must ensure that at least max(1,M) columns are */
 
- /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
 
- /*          is not known in advance and an upper bound must be used. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 
- /*          JOBZ = 'V', LDZ >= max(1,N). */
 
- /*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) ) */
 
- /*          The support of the eigenvectors in Z, i.e., the indices */
 
- /*          indicating the nonzero elements in Z. The i-th eigenvector */
 
- /*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
 
- /*          ISUPPZ( 2*i ). */
 
- /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal (and */
 
- /*          minimal) LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= max(1,20*N). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal sizes of the WORK and IWORK */
 
- /*          arrays, returns these values as the first entries of the WORK */
 
- /*          and IWORK arrays, and no error message related to LWORK or */
 
- /*          LIWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          On exit, if INFO = 0, IWORK(1) returns the optimal (and */
 
- /*          minimal) LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK.  LIWORK >= max(1,10*N). */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the optimal sizes of the WORK and */
 
- /*          IWORK arrays, returns these values as the first entries of */
 
- /*          the WORK and IWORK arrays, and no error message related to */
 
- /*          LWORK or LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  Internal error */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Inderjit Dhillon, IBM Almaden, USA */
 
- /*     Osni Marques, LBNL/NERSC, USA */
 
- /*     Ken Stanley, Computer Science Division, University of */
 
- /*       California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     --w;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --isuppz;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     ieeeok = _starpu_ilaenv_(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4);
 
-     wantz = _starpu_lsame_(jobz, "V");
 
-     alleig = _starpu_lsame_(range, "A");
 
-     valeig = _starpu_lsame_(range, "V");
 
-     indeig = _starpu_lsame_(range, "I");
 
-     lquery = *lwork == -1 || *liwork == -1;
 
- /* Computing MAX */
 
-     i__1 = 1, i__2 = *n * 20;
 
-     lwmin = max(i__1,i__2);
 
- /* Computing MAX */
 
-     i__1 = 1, i__2 = *n * 10;
 
-     liwmin = max(i__1,i__2);
 
-     *info = 0;
 
-     if (! (wantz || _starpu_lsame_(jobz, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (alleig || valeig || indeig)) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else {
 
- 	if (valeig) {
 
- 	    if (*n > 0 && *vu <= *vl) {
 
- 		*info = -7;
 
- 	    }
 
- 	} else if (indeig) {
 
- 	    if (*il < 1 || *il > max(1,*n)) {
 
- 		*info = -8;
 
- 	    } else if (*iu < min(*n,*il) || *iu > *n) {
 
- 		*info = -9;
 
- 	    }
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- 	if (*ldz < 1 || wantz && *ldz < *n) {
 
- 	    *info = -14;
 
- 	}
 
-     }
 
-     if (*info == 0) {
 
- 	work[1] = (doublereal) lwmin;
 
- 	iwork[1] = liwmin;
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -17;
 
- 	} else if (*liwork < liwmin && ! lquery) {
 
- 	    *info = -19;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DSTEVR", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     *m = 0;
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	if (alleig || indeig) {
 
- 	    *m = 1;
 
- 	    w[1] = d__[1];
 
- 	} else {
 
- 	    if (*vl < d__[1] && *vu >= d__[1]) {
 
- 		*m = 1;
 
- 		w[1] = d__[1];
 
- 	    }
 
- 	}
 
- 	if (wantz) {
 
- 	    z__[z_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Get machine constants. */
 
-     safmin = _starpu_dlamch_("Safe minimum");
 
-     eps = _starpu_dlamch_("Precision");
 
-     smlnum = safmin / eps;
 
-     bignum = 1. / smlnum;
 
-     rmin = sqrt(smlnum);
 
- /* Computing MIN */
 
-     d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
 
-     rmax = min(d__1,d__2);
 
- /*     Scale matrix to allowable range, if necessary. */
 
-     iscale = 0;
 
-     vll = *vl;
 
-     vuu = *vu;
 
-     tnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);
 
-     if (tnrm > 0. && tnrm < rmin) {
 
- 	iscale = 1;
 
- 	sigma = rmin / tnrm;
 
-     } else if (tnrm > rmax) {
 
- 	iscale = 1;
 
- 	sigma = rmax / tnrm;
 
-     }
 
-     if (iscale == 1) {
 
- 	_starpu_dscal_(n, &sigma, &d__[1], &c__1);
 
- 	i__1 = *n - 1;
 
- 	_starpu_dscal_(&i__1, &sigma, &e[1], &c__1);
 
- 	if (valeig) {
 
- 	    vll = *vl * sigma;
 
- 	    vuu = *vu * sigma;
 
- 	}
 
-     }
 
- /*     Initialize indices into workspaces.  Note: These indices are used only */
 
- /*     if DSTERF or DSTEMR fail. */
 
- /*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
 
- /*     stores the block indices of each of the M<=N eigenvalues. */
 
-     indibl = 1;
 
- /*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
 
- /*     stores the starting and finishing indices of each block. */
 
-     indisp = indibl + *n;
 
- /*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
 
- /*     that corresponding to eigenvectors that fail to converge in */
 
- /*     DSTEIN.  This information is discarded; if any fail, the driver */
 
- /*     returns INFO > 0. */
 
-     indifl = indisp + *n;
 
- /*     INDIWO is the offset of the remaining integer workspace. */
 
-     indiwo = indisp + *n;
 
- /*     If all eigenvalues are desired, then */
 
- /*     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then */
 
- /*     try DSTEBZ. */
 
-     test = FALSE_;
 
-     if (indeig) {
 
- 	if (*il == 1 && *iu == *n) {
 
- 	    test = TRUE_;
 
- 	}
 
-     }
 
-     if ((alleig || test) && ieeeok == 1) {
 
- 	i__1 = *n - 1;
 
- 	_starpu_dcopy_(&i__1, &e[1], &c__1, &work[1], &c__1);
 
- 	if (! wantz) {
 
- 	    _starpu_dcopy_(n, &d__[1], &c__1, &w[1], &c__1);
 
- 	    _starpu_dsterf_(n, &w[1], &work[1], info);
 
- 	} else {
 
- 	    _starpu_dcopy_(n, &d__[1], &c__1, &work[*n + 1], &c__1);
 
- 	    if (*abstol <= *n * 2. * eps) {
 
- 		tryrac = TRUE_;
 
- 	    } else {
 
- 		tryrac = FALSE_;
 
- 	    }
 
- 	    i__1 = *lwork - (*n << 1);
 
- 	    _starpu_dstemr_(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m, 
 
- 		    &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[
 
- 		    (*n << 1) + 1], &i__1, &iwork[1], liwork, info);
 
- 	}
 
- 	if (*info == 0) {
 
- 	    *m = *n;
 
- 	    goto L10;
 
- 	}
 
- 	*info = 0;
 
-     }
 
- /*     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
 
-     if (wantz) {
 
- 	*(unsigned char *)order = 'B';
 
-     } else {
 
- 	*(unsigned char *)order = 'E';
 
-     }
 
-     _starpu_dstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, &
 
- 	    nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[
 
- 	    indiwo], info);
 
-     if (wantz) {
 
- 	_starpu_dstein_(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], &
 
- 		z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl], 
 
- 		info);
 
-     }
 
- /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 
- L10:
 
-     if (iscale == 1) {
 
- 	if (*info == 0) {
 
- 	    imax = *m;
 
- 	} else {
 
- 	    imax = *info - 1;
 
- 	}
 
- 	d__1 = 1. / sigma;
 
- 	_starpu_dscal_(&imax, &d__1, &w[1], &c__1);
 
-     }
 
- /*     If eigenvalues are not in order, then sort them, along with */
 
- /*     eigenvectors. */
 
-     if (wantz) {
 
- 	i__1 = *m - 1;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__ = 0;
 
- 	    tmp1 = w[j];
 
- 	    i__2 = *m;
 
- 	    for (jj = j + 1; jj <= i__2; ++jj) {
 
- 		if (w[jj] < tmp1) {
 
- 		    i__ = jj;
 
- 		    tmp1 = w[jj];
 
- 		}
 
- /* L20: */
 
- 	    }
 
- 	    if (i__ != 0) {
 
- 		itmp1 = iwork[i__];
 
- 		w[i__] = w[j];
 
- 		iwork[i__] = iwork[j];
 
- 		w[j] = tmp1;
 
- 		iwork[j] = itmp1;
 
- 		_starpu_dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
 
- 			 &c__1);
 
- 	    }
 
- /* L30: */
 
- 	}
 
-     }
 
- /*      Causes problems with tests 19 & 20: */
 
- /*      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     return 0;
 
- /*     End of DSTEVR */
 
- } /* _starpu_dstevr_ */
 
 
  |