| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013 | 
							- /* dlansf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- doublereal _starpu_dlansf_(char *norm, char *transr, char *uplo, integer *n, 
 
- 	doublereal *a, doublereal *work)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     doublereal ret_val, d__1, d__2, d__3;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k, l;
 
-     doublereal s;
 
-     integer n1;
 
-     doublereal aa;
 
-     integer lda, ifm, noe, ilu;
 
-     doublereal scale;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     doublereal value;
 
-     extern integer _starpu_idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *);
 
- /*  -- LAPACK routine (version 3.2)                                    -- */
 
- /*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
 
- /*  -- November 2008                                                   -- */
 
- /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 
- /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLANSF returns the value of the one norm, or the Frobenius norm, or */
 
- /*  the infinity norm, or the element of largest absolute value of a */
 
- /*  real symmetric matrix A in RFP format. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  DLANSF returns the value */
 
- /*     DLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
 
- /*              ( */
 
- /*              ( norm1(A),         NORM = '1', 'O' or 'o' */
 
- /*              ( */
 
- /*              ( normI(A),         NORM = 'I' or 'i' */
 
- /*              ( */
 
- /*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */
 
- /*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
 
- /*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
 
- /*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
 
- /*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NORM    (input) CHARACTER */
 
- /*          Specifies the value to be returned in DLANSF as described */
 
- /*          above. */
 
- /*  TRANSR  (input) CHARACTER */
 
- /*          Specifies whether the RFP format of A is normal or */
 
- /*          transposed format. */
 
- /*          = 'N':  RFP format is Normal; */
 
- /*          = 'T':  RFP format is Transpose. */
 
- /*  UPLO    (input) CHARACTER */
 
- /*           On entry, UPLO specifies whether the RFP matrix A came from */
 
- /*           an upper or lower triangular matrix as follows: */
 
- /*           = 'U': RFP A came from an upper triangular matrix; */
 
- /*           = 'L': RFP A came from a lower triangular matrix. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A. N >= 0. When N = 0, DLANSF is */
 
- /*          set to zero. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); */
 
- /*          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') */
 
- /*          part of the symmetric matrix A stored in RFP format. See the */
 
- /*          "Notes" below for more details. */
 
- /*          Unchanged on exit. */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
 
- /*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
 
- /*          WORK is not referenced. */
 
- /*  Notes */
 
- /*  ===== */
 
- /*  We first consider Rectangular Full Packed (RFP) Format when N is */
 
- /*  even. We give an example where N = 6. */
 
- /*      AP is Upper             AP is Lower */
 
- /*   00 01 02 03 04 05       00 */
 
- /*      11 12 13 14 15       10 11 */
 
- /*         22 23 24 25       20 21 22 */
 
- /*            33 34 35       30 31 32 33 */
 
- /*               44 45       40 41 42 43 44 */
 
- /*                  55       50 51 52 53 54 55 */
 
- /*  Let TRANSR = 'N'. RFP holds AP as follows: */
 
- /*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
 
- /*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
 
- /*  the transpose of the first three columns of AP upper. */
 
- /*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
 
- /*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
 
- /*  the transpose of the last three columns of AP lower. */
 
- /*  This covers the case N even and TRANSR = 'N'. */
 
- /*         RFP A                   RFP A */
 
- /*        03 04 05                33 43 53 */
 
- /*        13 14 15                00 44 54 */
 
- /*        23 24 25                10 11 55 */
 
- /*        33 34 35                20 21 22 */
 
- /*        00 44 45                30 31 32 */
 
- /*        01 11 55                40 41 42 */
 
- /*        02 12 22                50 51 52 */
 
- /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
 
- /*  transpose of RFP A above. One therefore gets: */
 
- /*           RFP A                   RFP A */
 
- /*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
 
- /*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
 
- /*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
 
- /*  We first consider Rectangular Full Packed (RFP) Format when N is */
 
- /*  odd. We give an example where N = 5. */
 
- /*     AP is Upper                 AP is Lower */
 
- /*   00 01 02 03 04              00 */
 
- /*      11 12 13 14              10 11 */
 
- /*         22 23 24              20 21 22 */
 
- /*            33 34              30 31 32 33 */
 
- /*               44              40 41 42 43 44 */
 
- /*  Let TRANSR = 'N'. RFP holds AP as follows: */
 
- /*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
 
- /*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
 
- /*  the transpose of the first two columns of AP upper. */
 
- /*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
 
- /*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
 
- /*  the transpose of the last two columns of AP lower. */
 
- /*  This covers the case N odd and TRANSR = 'N'. */
 
- /*         RFP A                   RFP A */
 
- /*        02 03 04                00 33 43 */
 
- /*        12 13 14                10 11 44 */
 
- /*        22 23 24                20 21 22 */
 
- /*        00 33 34                30 31 32 */
 
- /*        01 11 44                40 41 42 */
 
- /*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
 
- /*  transpose of RFP A above. One therefore gets: */
 
- /*           RFP A                   RFP A */
 
- /*     02 12 22 00 01             00 10 20 30 40 50 */
 
- /*     03 13 23 33 11             33 11 21 31 41 51 */
 
- /*     04 14 24 34 44             43 44 22 32 42 52 */
 
- /*  Reference */
 
- /*  ========= */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     if (*n == 0) {
 
- 	ret_val = 0.;
 
- 	return ret_val;
 
-     }
 
- /*     set noe = 1 if n is odd. if n is even set noe=0 */
 
-     noe = 1;
 
-     if (*n % 2 == 0) {
 
- 	noe = 0;
 
-     }
 
- /*     set ifm = 0 when form='T or 't' and 1 otherwise */
 
-     ifm = 1;
 
-     if (_starpu_lsame_(transr, "T")) {
 
- 	ifm = 0;
 
-     }
 
- /*     set ilu = 0 when uplo='U or 'u' and 1 otherwise */
 
-     ilu = 1;
 
-     if (_starpu_lsame_(uplo, "U")) {
 
- 	ilu = 0;
 
-     }
 
- /*     set lda = (n+1)/2 when ifm = 0 */
 
- /*     set lda = n when ifm = 1 and noe = 1 */
 
- /*     set lda = n+1 when ifm = 1 and noe = 0 */
 
-     if (ifm == 1) {
 
- 	if (noe == 1) {
 
- 	    lda = *n;
 
- 	} else {
 
- /*           noe=0 */
 
- 	    lda = *n + 1;
 
- 	}
 
-     } else {
 
- /*        ifm=0 */
 
- 	lda = (*n + 1) / 2;
 
-     }
 
-     if (_starpu_lsame_(norm, "M")) {
 
- /*       Find max(abs(A(i,j))). */
 
- 	k = (*n + 1) / 2;
 
- 	value = 0.;
 
- 	if (noe == 1) {
 
- /*           n is odd */
 
- 	    if (ifm == 1) {
 
- /*           A is n by k */
 
- 		i__1 = k - 1;
 
- 		for (j = 0; j <= i__1; ++j) {
 
- 		    i__2 = *n - 1;
 
- 		    for (i__ = 0; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
 
- 				d__1));
 
- 			value = max(d__2,d__3);
 
- 		    }
 
- 		}
 
- 	    } else {
 
- /*              xpose case; A is k by n */
 
- 		i__1 = *n - 1;
 
- 		for (j = 0; j <= i__1; ++j) {
 
- 		    i__2 = k - 1;
 
- 		    for (i__ = 0; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
 
- 				d__1));
 
- 			value = max(d__2,d__3);
 
- 		    }
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           n is even */
 
- 	    if (ifm == 1) {
 
- /*              A is n+1 by k */
 
- 		i__1 = k - 1;
 
- 		for (j = 0; j <= i__1; ++j) {
 
- 		    i__2 = *n;
 
- 		    for (i__ = 0; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
 
- 				d__1));
 
- 			value = max(d__2,d__3);
 
- 		    }
 
- 		}
 
- 	    } else {
 
- /*              xpose case; A is k by n+1 */
 
- 		i__1 = *n;
 
- 		for (j = 0; j <= i__1; ++j) {
 
- 		    i__2 = k - 1;
 
- 		    for (i__ = 0; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 			d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
 
- 				d__1));
 
- 			value = max(d__2,d__3);
 
- 		    }
 
- 		}
 
- 	    }
 
- 	}
 
-     } else if (_starpu_lsame_(norm, "I") || _starpu_lsame_(norm, "O") || *(unsigned char *)norm == '1') {
 
- /*        Find normI(A) ( = norm1(A), since A is symmetric). */
 
- 	if (ifm == 1) {
 
- 	    k = *n / 2;
 
- 	    if (noe == 1) {
 
- /*              n is odd */
 
- 		if (ilu == 0) {
 
- 		    i__1 = k - 1;
 
- 		    for (i__ = 0; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- 		    i__1 = k;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			s = 0.;
 
- 			i__2 = k + j - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(i,j+k) */
 
- 			    s += aa;
 
- 			    work[i__] += aa;
 
- 			}
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    -> A(j+k,j+k) */
 
- 			work[j + k] = s + aa;
 
- 			if (i__ == k + k) {
 
- 			    goto L10;
 
- 			}
 
- 			++i__;
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    -> A(j,j) */
 
- 			work[j] += aa;
 
- 			s = 0.;
 
- 			i__2 = k - 1;
 
- 			for (l = j + 1; l <= i__2; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(l,j) */
 
- 			    s += aa;
 
- 			    work[l] += aa;
 
- 			}
 
- 			work[j] += s;
 
- 		    }
 
- L10:
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		} else {
 
- /*                 ilu = 1 */
 
- 		    ++k;
 
- /*                 k=(n+1)/2 for n odd and ilu=1 */
 
- 		    i__1 = *n - 1;
 
- 		    for (i__ = k; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- 		    for (j = k - 1; j >= 0; --j) {
 
- 			s = 0.;
 
- 			i__1 = j - 2;
 
- 			for (i__ = 0; i__ <= i__1; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(j+k,i+k) */
 
- 			    s += aa;
 
- 			    work[i__ + k] += aa;
 
- 			}
 
- 			if (j > 0) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(j+k,j+k) */
 
- 			    s += aa;
 
- 			    work[i__ + k] += s;
 
- /*                       i=j */
 
- 			    ++i__;
 
- 			}
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    -> A(j,j) */
 
- 			work[j] = aa;
 
- 			s = 0.;
 
- 			i__1 = *n - 1;
 
- 			for (l = j + 1; l <= i__1; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(l,j) */
 
- 			    s += aa;
 
- 			    work[l] += aa;
 
- 			}
 
- 			work[j] += s;
 
- 		    }
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		}
 
- 	    } else {
 
- /*              n is even */
 
- 		if (ilu == 0) {
 
- 		    i__1 = k - 1;
 
- 		    for (i__ = 0; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- 		    i__1 = k - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			s = 0.;
 
- 			i__2 = k + j - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(i,j+k) */
 
- 			    s += aa;
 
- 			    work[i__] += aa;
 
- 			}
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    -> A(j+k,j+k) */
 
- 			work[j + k] = s + aa;
 
- 			++i__;
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    -> A(j,j) */
 
- 			work[j] += aa;
 
- 			s = 0.;
 
- 			i__2 = k - 1;
 
- 			for (l = j + 1; l <= i__2; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(l,j) */
 
- 			    s += aa;
 
- 			    work[l] += aa;
 
- 			}
 
- 			work[j] += s;
 
- 		    }
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		} else {
 
- /*                 ilu = 1 */
 
- 		    i__1 = *n - 1;
 
- 		    for (i__ = k; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- 		    for (j = k - 1; j >= 0; --j) {
 
- 			s = 0.;
 
- 			i__1 = j - 1;
 
- 			for (i__ = 0; i__ <= i__1; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(j+k,i+k) */
 
- 			    s += aa;
 
- 			    work[i__ + k] += aa;
 
- 			}
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    -> A(j+k,j+k) */
 
- 			s += aa;
 
- 			work[i__ + k] += s;
 
- /*                    i=j */
 
- 			++i__;
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    -> A(j,j) */
 
- 			work[j] = aa;
 
- 			s = 0.;
 
- 			i__1 = *n - 1;
 
- 			for (l = j + 1; l <= i__1; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       -> A(l,j) */
 
- 			    s += aa;
 
- 			    work[l] += aa;
 
- 			}
 
- 			work[j] += s;
 
- 		    }
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           ifm=0 */
 
- 	    k = *n / 2;
 
- 	    if (noe == 1) {
 
- /*              n is odd */
 
- 		if (ilu == 0) {
 
- 		    n1 = k;
 
- /*                 n/2 */
 
- 		    ++k;
 
- /*                 k is the row size and lda */
 
- 		    i__1 = *n - 1;
 
- 		    for (i__ = n1; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- 		    i__1 = n1 - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			s = 0.;
 
- 			i__2 = k - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j,n1+i) */
 
- 			    work[i__ + n1] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			work[j] = s;
 
- 		    }
 
- /*                 j=n1=k-1 is special */
 
- 		    s = (d__1 = a[j * lda], abs(d__1));
 
- /*                 A(k-1,k-1) */
 
- 		    i__1 = k - 1;
 
- 		    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(k-1,i+n1) */
 
- 			work[i__ + n1] += aa;
 
- 			s += aa;
 
- 		    }
 
- 		    work[j] += s;
 
- 		    i__1 = *n - 1;
 
- 		    for (j = k; j <= i__1; ++j) {
 
- 			s = 0.;
 
- 			i__2 = j - k - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(i,j-k) */
 
- 			    work[i__] += aa;
 
- 			    s += aa;
 
- 			}
 
- /*                    i=j-k */
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(j-k,j-k) */
 
- 			s += aa;
 
- 			work[j - k] += s;
 
- 			++i__;
 
- 			s = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(j,j) */
 
- 			i__2 = *n - 1;
 
- 			for (l = j + 1; l <= i__2; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j,l) */
 
- 			    work[l] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			work[j] += s;
 
- 		    }
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		} else {
 
- /*                 ilu=1 */
 
- 		    ++k;
 
- /*                 k=(n+1)/2 for n odd and ilu=1 */
 
- 		    i__1 = *n - 1;
 
- 		    for (i__ = k; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- 		    i__1 = k - 2;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- /*                    process */
 
- 			s = 0.;
 
- 			i__2 = j - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j,i) */
 
- 			    work[i__] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    i=j so process of A(j,j) */
 
- 			s += aa;
 
- 			work[j] = s;
 
- /*                    is initialised here */
 
- 			++i__;
 
- /*                    i=j process A(j+k,j+k) */
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- 			s = aa;
 
- 			i__2 = *n - 1;
 
- 			for (l = k + j + 1; l <= i__2; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(l,k+j) */
 
- 			    s += aa;
 
- 			    work[l] += aa;
 
- 			}
 
- 			work[k + j] += s;
 
- 		    }
 
- /*                 j=k-1 is special :process col A(k-1,0:k-1) */
 
- 		    s = 0.;
 
- 		    i__1 = k - 2;
 
- 		    for (i__ = 0; i__ <= i__1; ++i__) {
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(k,i) */
 
- 			work[i__] += aa;
 
- 			s += aa;
 
- 		    }
 
- /*                 i=k-1 */
 
- 		    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                 A(k-1,k-1) */
 
- 		    s += aa;
 
- 		    work[i__] = s;
 
- /*                 done with col j=k+1 */
 
- 		    i__1 = *n - 1;
 
- 		    for (j = k; j <= i__1; ++j) {
 
- /*                    process col j of A = A(j,0:k-1) */
 
- 			s = 0.;
 
- 			i__2 = k - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j,i) */
 
- 			    work[i__] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			work[j] += s;
 
- 		    }
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		}
 
- 	    } else {
 
- /*              n is even */
 
- 		if (ilu == 0) {
 
- 		    i__1 = *n - 1;
 
- 		    for (i__ = k; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- 		    i__1 = k - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			s = 0.;
 
- 			i__2 = k - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j,i+k) */
 
- 			    work[i__ + k] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			work[j] = s;
 
- 		    }
 
- /*                 j=k */
 
- 		    aa = (d__1 = a[j * lda], abs(d__1));
 
- /*                 A(k,k) */
 
- 		    s = aa;
 
- 		    i__1 = k - 1;
 
- 		    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(k,k+i) */
 
- 			work[i__ + k] += aa;
 
- 			s += aa;
 
- 		    }
 
- 		    work[j] += s;
 
- 		    i__1 = *n - 1;
 
- 		    for (j = k + 1; j <= i__1; ++j) {
 
- 			s = 0.;
 
- 			i__2 = j - 2 - k;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(i,j-k-1) */
 
- 			    work[i__] += aa;
 
- 			    s += aa;
 
- 			}
 
- /*                     i=j-1-k */
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(j-k-1,j-k-1) */
 
- 			s += aa;
 
- 			work[j - k - 1] += s;
 
- 			++i__;
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(j,j) */
 
- 			s = aa;
 
- 			i__2 = *n - 1;
 
- 			for (l = j + 1; l <= i__2; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j,l) */
 
- 			    work[l] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			work[j] += s;
 
- 		    }
 
- /*                 j=n */
 
- 		    s = 0.;
 
- 		    i__1 = k - 2;
 
- 		    for (i__ = 0; i__ <= i__1; ++i__) {
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(i,k-1) */
 
- 			work[i__] += aa;
 
- 			s += aa;
 
- 		    }
 
- /*                 i=k-1 */
 
- 		    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                 A(k-1,k-1) */
 
- 		    s += aa;
 
- 		    work[i__] += s;
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		} else {
 
- /*                 ilu=1 */
 
- 		    i__1 = *n - 1;
 
- 		    for (i__ = k; i__ <= i__1; ++i__) {
 
- 			work[i__] = 0.;
 
- 		    }
 
- /*                 j=0 is special :process col A(k:n-1,k) */
 
- 		    s = abs(a[0]);
 
- /*                 A(k,k) */
 
- 		    i__1 = k - 1;
 
- 		    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			aa = (d__1 = a[i__], abs(d__1));
 
- /*                    A(k+i,k) */
 
- 			work[i__ + k] += aa;
 
- 			s += aa;
 
- 		    }
 
- 		    work[k] += s;
 
- 		    i__1 = k - 1;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- /*                    process */
 
- 			s = 0.;
 
- 			i__2 = j - 2;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j-1,i) */
 
- 			    work[i__] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    i=j-1 so process of A(j-1,j-1) */
 
- 			s += aa;
 
- 			work[j - 1] = s;
 
- /*                    is initialised here */
 
- 			++i__;
 
- /*                    i=j process A(j+k,j+k) */
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- 			s = aa;
 
- 			i__2 = *n - 1;
 
- 			for (l = k + j + 1; l <= i__2; ++l) {
 
- 			    ++i__;
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(l,k+j) */
 
- 			    s += aa;
 
- 			    work[l] += aa;
 
- 			}
 
- 			work[k + j] += s;
 
- 		    }
 
- /*                 j=k is special :process col A(k,0:k-1) */
 
- 		    s = 0.;
 
- 		    i__1 = k - 2;
 
- 		    for (i__ = 0; i__ <= i__1; ++i__) {
 
- 			aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                    A(k,i) */
 
- 			work[i__] += aa;
 
- 			s += aa;
 
- 		    }
 
- /*                 i=k-1 */
 
- 		    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                 A(k-1,k-1) */
 
- 		    s += aa;
 
- 		    work[i__] = s;
 
- /*                 done with col j=k+1 */
 
- 		    i__1 = *n;
 
- 		    for (j = k + 1; j <= i__1; ++j) {
 
- /*                    process col j-1 of A = A(j-1,0:k-1) */
 
- 			s = 0.;
 
- 			i__2 = k - 1;
 
- 			for (i__ = 0; i__ <= i__2; ++i__) {
 
- 			    aa = (d__1 = a[i__ + j * lda], abs(d__1));
 
- /*                       A(j-1,i) */
 
- 			    work[i__] += aa;
 
- 			    s += aa;
 
- 			}
 
- 			work[j - 1] += s;
 
- 		    }
 
- 		    i__ = _starpu_idamax_(n, work, &c__1);
 
- 		    value = work[i__ - 1];
 
- 		}
 
- 	    }
 
- 	}
 
-     } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {
 
- /*       Find normF(A). */
 
- 	k = (*n + 1) / 2;
 
- 	scale = 0.;
 
- 	s = 1.;
 
- 	if (noe == 1) {
 
- /*           n is odd */
 
- 	    if (ifm == 1) {
 
- /*              A is normal */
 
- 		if (ilu == 0) {
 
- /*                 A is upper */
 
- 		    i__1 = k - 3;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k - j - 2;
 
- 			_starpu_dlassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale, 
 
- 				 &s);
 
- /*                    L at A(k,0) */
 
- 		    }
 
- 		    i__1 = k - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k + j - 1;
 
- 			_starpu_dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
 
- /*                    trap U at A(0,0) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = k - 1;
 
- 		    i__2 = lda + 1;
 
- 		    _starpu_dlassq_(&i__1, &a[k], &i__2, &scale, &s);
 
- /*                 tri L at A(k,0) */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[k - 1], &i__1, &scale, &s);
 
- /*                 tri U at A(k-1,0) */
 
- 		} else {
 
- /*                 ilu=1 & A is lower */
 
- 		    i__1 = k - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = *n - j - 1;
 
- 			_starpu_dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
 
- 				;
 
- /*                    trap L at A(0,0) */
 
- 		    }
 
- 		    i__1 = k - 2;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
 
- /*                    U at A(0,1) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);
 
- /*                 tri L at A(0,0) */
 
- 		    i__1 = k - 1;
 
- 		    i__2 = lda + 1;
 
- 		    _starpu_dlassq_(&i__1, &a[lda], &i__2, &scale, &s);
 
- /*                 tri U at A(0,1) */
 
- 		}
 
- 	    } else {
 
- /*              A is xpose */
 
- 		if (ilu == 0) {
 
- /*                 A' is upper */
 
- 		    i__1 = k - 2;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s);
 
- /*                    U at A(0,k) */
 
- 		    }
 
- 		    i__1 = k - 2;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 
- /*                    k by k-1 rect. at A(0,0) */
 
- 		    }
 
- 		    i__1 = k - 2;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k - j - 1;
 
- 			_starpu_dlassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, &
 
- 				scale, &s);
 
- /*                    L at A(0,k-1) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = k - 1;
 
- 		    i__2 = lda + 1;
 
- 		    _starpu_dlassq_(&i__1, &a[k * lda], &i__2, &scale, &s);
 
- /*                 tri U at A(0,k) */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[(k - 1) * lda], &i__1, &scale, &s);
 
- /*                 tri L at A(0,k-1) */
 
- 		} else {
 
- /*                 A' is lower */
 
- 		    i__1 = k - 1;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&j, &a[j * lda], &c__1, &scale, &s);
 
- /*                    U at A(0,0) */
 
- 		    }
 
- 		    i__1 = *n - 1;
 
- 		    for (j = k; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 
- /*                    k by k-1 rect. at A(0,k) */
 
- 		    }
 
- 		    i__1 = k - 3;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k - j - 2;
 
- 			_starpu_dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
 
- 				;
 
- /*                    L at A(1,0) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);
 
- /*                 tri U at A(0,0) */
 
- 		    i__1 = k - 1;
 
- 		    i__2 = lda + 1;
 
- 		    _starpu_dlassq_(&i__1, &a[1], &i__2, &scale, &s);
 
- /*                 tri L at A(1,0) */
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           n is even */
 
- 	    if (ifm == 1) {
 
- /*              A is normal */
 
- 		if (ilu == 0) {
 
- /*                 A is upper */
 
- 		    i__1 = k - 2;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k - j - 1;
 
- 			_starpu_dlassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale, 
 
- 				 &s);
 
- /*                    L at A(k+1,0) */
 
- 		    }
 
- 		    i__1 = k - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k + j;
 
- 			_starpu_dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
 
- /*                    trap U at A(0,0) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[k + 1], &i__1, &scale, &s);
 
- /*                 tri L at A(k+1,0) */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[k], &i__1, &scale, &s);
 
- /*                 tri U at A(k,0) */
 
- 		} else {
 
- /*                 ilu=1 & A is lower */
 
- 		    i__1 = k - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = *n - j - 1;
 
- 			_starpu_dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
 
- 				;
 
- /*                    trap L at A(1,0) */
 
- 		    }
 
- 		    i__1 = k - 1;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&j, &a[j * lda], &c__1, &scale, &s);
 
- /*                    U at A(0,0) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[1], &i__1, &scale, &s);
 
- /*                 tri L at A(1,0) */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);
 
- /*                 tri U at A(0,0) */
 
- 		}
 
- 	    } else {
 
- /*              A is xpose */
 
- 		if (ilu == 0) {
 
- /*                 A' is upper */
 
- 		    i__1 = k - 1;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s);
 
- /*                    U at A(0,k+1) */
 
- 		    }
 
- 		    i__1 = k - 1;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 
- /*                    k by k rect. at A(0,0) */
 
- 		    }
 
- 		    i__1 = k - 2;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k - j - 1;
 
- 			_starpu_dlassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, &
 
- 				scale, &s);
 
- /*                    L at A(0,k) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[(k + 1) * lda], &i__1, &scale, &s);
 
- /*                 tri U at A(0,k+1) */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[k * lda], &i__1, &scale, &s);
 
- /*                 tri L at A(0,k) */
 
- 		} else {
 
- /*                 A' is lower */
 
- 		    i__1 = k - 1;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
 
- /*                    U at A(0,1) */
 
- 		    }
 
- 		    i__1 = *n;
 
- 		    for (j = k + 1; j <= i__1; ++j) {
 
- 			_starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 
- /*                    k by k rect. at A(0,k+1) */
 
- 		    }
 
- 		    i__1 = k - 2;
 
- 		    for (j = 0; j <= i__1; ++j) {
 
- 			i__2 = k - j - 1;
 
- 			_starpu_dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
 
- 				;
 
- /*                    L at A(0,0) */
 
- 		    }
 
- 		    s += s;
 
- /*                 double s for the off diagonal elements */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, &a[lda], &i__1, &scale, &s);
 
- /*                 tri L at A(0,1) */
 
- 		    i__1 = lda + 1;
 
- 		    _starpu_dlassq_(&k, a, &i__1, &scale, &s);
 
- /*                 tri U at A(0,0) */
 
- 		}
 
- 	    }
 
- 	}
 
- 	value = scale * sqrt(s);
 
-     }
 
-     ret_val = value;
 
-     return ret_val;
 
- /*     End of DLANSF */
 
- } /* _starpu_dlansf_ */
 
 
  |