123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626 |
- /* dtgsja.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b13 = 0.;
- static doublereal c_b14 = 1.;
- static integer c__1 = 1;
- static doublereal c_b43 = -1.;
- /* Subroutine */ int dtgsja_(char *jobu, char *jobv, char *jobq, integer *m,
- integer *p, integer *n, integer *k, integer *l, doublereal *a,
- integer *lda, doublereal *b, integer *ldb, doublereal *tola,
- doublereal *tolb, doublereal *alpha, doublereal *beta, doublereal *u,
- integer *ldu, doublereal *v, integer *ldv, doublereal *q, integer *
- ldq, doublereal *work, integer *ncycle, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
- u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4;
- doublereal d__1;
- /* Local variables */
- integer i__, j;
- doublereal a1, a2, a3, b1, b2, b3, csq, csu, csv, snq, rwk, snu, snv;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- doublereal gamma;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- logical initq, initu, initv, wantq, upper;
- doublereal error, ssmin;
- logical wantu, wantv;
- extern /* Subroutine */ int dlags2_(logical *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *), dlapll_(integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *);
- integer kcycle;
- extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *), dlaset_(char *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *), xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTGSJA computes the generalized singular value decomposition (GSVD) */
- /* of two real upper triangular (or trapezoidal) matrices A and B. */
- /* On entry, it is assumed that matrices A and B have the following */
- /* forms, which may be obtained by the preprocessing subroutine DGGSVP */
- /* from a general M-by-N matrix A and P-by-N matrix B: */
- /* N-K-L K L */
- /* A = K ( 0 A12 A13 ) if M-K-L >= 0; */
- /* L ( 0 0 A23 ) */
- /* M-K-L ( 0 0 0 ) */
- /* N-K-L K L */
- /* A = K ( 0 A12 A13 ) if M-K-L < 0; */
- /* M-K ( 0 0 A23 ) */
- /* N-K-L K L */
- /* B = L ( 0 0 B13 ) */
- /* P-L ( 0 0 0 ) */
- /* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
- /* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
- /* otherwise A23 is (M-K)-by-L upper trapezoidal. */
- /* On exit, */
- /* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ), */
- /* where U, V and Q are orthogonal matrices, Z' denotes the transpose */
- /* of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are */
- /* ``diagonal'' matrices, which are of the following structures: */
- /* If M-K-L >= 0, */
- /* K L */
- /* D1 = K ( I 0 ) */
- /* L ( 0 C ) */
- /* M-K-L ( 0 0 ) */
- /* K L */
- /* D2 = L ( 0 S ) */
- /* P-L ( 0 0 ) */
- /* N-K-L K L */
- /* ( 0 R ) = K ( 0 R11 R12 ) K */
- /* L ( 0 0 R22 ) L */
- /* where */
- /* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
- /* S = diag( BETA(K+1), ... , BETA(K+L) ), */
- /* C**2 + S**2 = I. */
- /* R is stored in A(1:K+L,N-K-L+1:N) on exit. */
- /* If M-K-L < 0, */
- /* K M-K K+L-M */
- /* D1 = K ( I 0 0 ) */
- /* M-K ( 0 C 0 ) */
- /* K M-K K+L-M */
- /* D2 = M-K ( 0 S 0 ) */
- /* K+L-M ( 0 0 I ) */
- /* P-L ( 0 0 0 ) */
- /* N-K-L K M-K K+L-M */
- /* ( 0 R ) = K ( 0 R11 R12 R13 ) */
- /* M-K ( 0 0 R22 R23 ) */
- /* K+L-M ( 0 0 0 R33 ) */
- /* where */
- /* C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
- /* S = diag( BETA(K+1), ... , BETA(M) ), */
- /* C**2 + S**2 = I. */
- /* R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored */
- /* ( 0 R22 R23 ) */
- /* in B(M-K+1:L,N+M-K-L+1:N) on exit. */
- /* The computation of the orthogonal transformation matrices U, V or Q */
- /* is optional. These matrices may either be formed explicitly, or they */
- /* may be postmultiplied into input matrices U1, V1, or Q1. */
- /* Arguments */
- /* ========= */
- /* JOBU (input) CHARACTER*1 */
- /* = 'U': U must contain an orthogonal matrix U1 on entry, and */
- /* the product U1*U is returned; */
- /* = 'I': U is initialized to the unit matrix, and the */
- /* orthogonal matrix U is returned; */
- /* = 'N': U is not computed. */
- /* JOBV (input) CHARACTER*1 */
- /* = 'V': V must contain an orthogonal matrix V1 on entry, and */
- /* the product V1*V is returned; */
- /* = 'I': V is initialized to the unit matrix, and the */
- /* orthogonal matrix V is returned; */
- /* = 'N': V is not computed. */
- /* JOBQ (input) CHARACTER*1 */
- /* = 'Q': Q must contain an orthogonal matrix Q1 on entry, and */
- /* the product Q1*Q is returned; */
- /* = 'I': Q is initialized to the unit matrix, and the */
- /* orthogonal matrix Q is returned; */
- /* = 'N': Q is not computed. */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* P (input) INTEGER */
- /* The number of rows of the matrix B. P >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrices A and B. N >= 0. */
- /* K (input) INTEGER */
- /* L (input) INTEGER */
- /* K and L specify the subblocks in the input matrices A and B: */
- /* A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N) */
- /* of A and B, whose GSVD is going to be computed by DTGSJA. */
- /* See Further details. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular */
- /* matrix R or part of R. See Purpose for details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
- /* On entry, the P-by-N matrix B. */
- /* On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains */
- /* a part of R. See Purpose for details. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,P). */
- /* TOLA (input) DOUBLE PRECISION */
- /* TOLB (input) DOUBLE PRECISION */
- /* TOLA and TOLB are the convergence criteria for the Jacobi- */
- /* Kogbetliantz iteration procedure. Generally, they are the */
- /* same as used in the preprocessing step, say */
- /* TOLA = max(M,N)*norm(A)*MAZHEPS, */
- /* TOLB = max(P,N)*norm(B)*MAZHEPS. */
- /* ALPHA (output) DOUBLE PRECISION array, dimension (N) */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* On exit, ALPHA and BETA contain the generalized singular */
- /* value pairs of A and B; */
- /* ALPHA(1:K) = 1, */
- /* BETA(1:K) = 0, */
- /* and if M-K-L >= 0, */
- /* ALPHA(K+1:K+L) = diag(C), */
- /* BETA(K+1:K+L) = diag(S), */
- /* or if M-K-L < 0, */
- /* ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0 */
- /* BETA(K+1:M) = S, BETA(M+1:K+L) = 1. */
- /* Furthermore, if K+L < N, */
- /* ALPHA(K+L+1:N) = 0 and */
- /* BETA(K+L+1:N) = 0. */
- /* U (input/output) DOUBLE PRECISION array, dimension (LDU,M) */
- /* On entry, if JOBU = 'U', U must contain a matrix U1 (usually */
- /* the orthogonal matrix returned by DGGSVP). */
- /* On exit, */
- /* if JOBU = 'I', U contains the orthogonal matrix U; */
- /* if JOBU = 'U', U contains the product U1*U. */
- /* If JOBU = 'N', U is not referenced. */
- /* LDU (input) INTEGER */
- /* The leading dimension of the array U. LDU >= max(1,M) if */
- /* JOBU = 'U'; LDU >= 1 otherwise. */
- /* V (input/output) DOUBLE PRECISION array, dimension (LDV,P) */
- /* On entry, if JOBV = 'V', V must contain a matrix V1 (usually */
- /* the orthogonal matrix returned by DGGSVP). */
- /* On exit, */
- /* if JOBV = 'I', V contains the orthogonal matrix V; */
- /* if JOBV = 'V', V contains the product V1*V. */
- /* If JOBV = 'N', V is not referenced. */
- /* LDV (input) INTEGER */
- /* The leading dimension of the array V. LDV >= max(1,P) if */
- /* JOBV = 'V'; LDV >= 1 otherwise. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually */
- /* the orthogonal matrix returned by DGGSVP). */
- /* On exit, */
- /* if JOBQ = 'I', Q contains the orthogonal matrix Q; */
- /* if JOBQ = 'Q', Q contains the product Q1*Q. */
- /* If JOBQ = 'N', Q is not referenced. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= max(1,N) if */
- /* JOBQ = 'Q'; LDQ >= 1 otherwise. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
- /* NCYCLE (output) INTEGER */
- /* The number of cycles required for convergence. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* = 1: the procedure does not converge after MAXIT cycles. */
- /* Internal Parameters */
- /* =================== */
- /* MAXIT INTEGER */
- /* MAXIT specifies the total loops that the iterative procedure */
- /* may take. If after MAXIT cycles, the routine fails to */
- /* converge, we return INFO = 1. */
- /* Further Details */
- /* =============== */
- /* DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce */
- /* min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L */
- /* matrix B13 to the form: */
- /* U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1, */
- /* where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose */
- /* of Z. C1 and S1 are diagonal matrices satisfying */
- /* C1**2 + S1**2 = I, */
- /* and R1 is an L-by-L nonsingular upper triangular matrix. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --alpha;
- --beta;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1;
- v -= v_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --work;
- /* Function Body */
- initu = lsame_(jobu, "I");
- wantu = initu || lsame_(jobu, "U");
- initv = lsame_(jobv, "I");
- wantv = initv || lsame_(jobv, "V");
- initq = lsame_(jobq, "I");
- wantq = initq || lsame_(jobq, "Q");
- *info = 0;
- if (! (initu || wantu || lsame_(jobu, "N"))) {
- *info = -1;
- } else if (! (initv || wantv || lsame_(jobv, "N")))
- {
- *info = -2;
- } else if (! (initq || wantq || lsame_(jobq, "N")))
- {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*p < 0) {
- *info = -5;
- } else if (*n < 0) {
- *info = -6;
- } else if (*lda < max(1,*m)) {
- *info = -10;
- } else if (*ldb < max(1,*p)) {
- *info = -12;
- } else if (*ldu < 1 || wantu && *ldu < *m) {
- *info = -18;
- } else if (*ldv < 1 || wantv && *ldv < *p) {
- *info = -20;
- } else if (*ldq < 1 || wantq && *ldq < *n) {
- *info = -22;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTGSJA", &i__1);
- return 0;
- }
- /* Initialize U, V and Q, if necessary */
- if (initu) {
- dlaset_("Full", m, m, &c_b13, &c_b14, &u[u_offset], ldu);
- }
- if (initv) {
- dlaset_("Full", p, p, &c_b13, &c_b14, &v[v_offset], ldv);
- }
- if (initq) {
- dlaset_("Full", n, n, &c_b13, &c_b14, &q[q_offset], ldq);
- }
- /* Loop until convergence */
- upper = FALSE_;
- for (kcycle = 1; kcycle <= 40; ++kcycle) {
- upper = ! upper;
- i__1 = *l - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *l;
- for (j = i__ + 1; j <= i__2; ++j) {
- a1 = 0.;
- a2 = 0.;
- a3 = 0.;
- if (*k + i__ <= *m) {
- a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
- }
- if (*k + j <= *m) {
- a3 = a[*k + j + (*n - *l + j) * a_dim1];
- }
- b1 = b[i__ + (*n - *l + i__) * b_dim1];
- b3 = b[j + (*n - *l + j) * b_dim1];
- if (upper) {
- if (*k + i__ <= *m) {
- a2 = a[*k + i__ + (*n - *l + j) * a_dim1];
- }
- b2 = b[i__ + (*n - *l + j) * b_dim1];
- } else {
- if (*k + j <= *m) {
- a2 = a[*k + j + (*n - *l + i__) * a_dim1];
- }
- b2 = b[j + (*n - *l + i__) * b_dim1];
- }
- dlags2_(&upper, &a1, &a2, &a3, &b1, &b2, &b3, &csu, &snu, &
- csv, &snv, &csq, &snq);
- /* Update (K+I)-th and (K+J)-th rows of matrix A: U'*A */
- if (*k + j <= *m) {
- drot_(l, &a[*k + j + (*n - *l + 1) * a_dim1], lda, &a[*k
- + i__ + (*n - *l + 1) * a_dim1], lda, &csu, &snu);
- }
- /* Update I-th and J-th rows of matrix B: V'*B */
- drot_(l, &b[j + (*n - *l + 1) * b_dim1], ldb, &b[i__ + (*n - *
- l + 1) * b_dim1], ldb, &csv, &snv);
- /* Update (N-L+I)-th and (N-L+J)-th columns of matrices */
- /* A and B: A*Q and B*Q */
- /* Computing MIN */
- i__4 = *k + *l;
- i__3 = min(i__4,*m);
- drot_(&i__3, &a[(*n - *l + j) * a_dim1 + 1], &c__1, &a[(*n - *
- l + i__) * a_dim1 + 1], &c__1, &csq, &snq);
- drot_(l, &b[(*n - *l + j) * b_dim1 + 1], &c__1, &b[(*n - *l +
- i__) * b_dim1 + 1], &c__1, &csq, &snq);
- if (upper) {
- if (*k + i__ <= *m) {
- a[*k + i__ + (*n - *l + j) * a_dim1] = 0.;
- }
- b[i__ + (*n - *l + j) * b_dim1] = 0.;
- } else {
- if (*k + j <= *m) {
- a[*k + j + (*n - *l + i__) * a_dim1] = 0.;
- }
- b[j + (*n - *l + i__) * b_dim1] = 0.;
- }
- /* Update orthogonal matrices U, V, Q, if desired. */
- if (wantu && *k + j <= *m) {
- drot_(m, &u[(*k + j) * u_dim1 + 1], &c__1, &u[(*k + i__) *
- u_dim1 + 1], &c__1, &csu, &snu);
- }
- if (wantv) {
- drot_(p, &v[j * v_dim1 + 1], &c__1, &v[i__ * v_dim1 + 1],
- &c__1, &csv, &snv);
- }
- if (wantq) {
- drot_(n, &q[(*n - *l + j) * q_dim1 + 1], &c__1, &q[(*n - *
- l + i__) * q_dim1 + 1], &c__1, &csq, &snq);
- }
- /* L10: */
- }
- /* L20: */
- }
- if (! upper) {
- /* The matrices A13 and B13 were lower triangular at the start */
- /* of the cycle, and are now upper triangular. */
- /* Convergence test: test the parallelism of the corresponding */
- /* rows of A and B. */
- error = 0.;
- /* Computing MIN */
- i__2 = *l, i__3 = *m - *k;
- i__1 = min(i__2,i__3);
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *l - i__ + 1;
- dcopy_(&i__2, &a[*k + i__ + (*n - *l + i__) * a_dim1], lda, &
- work[1], &c__1);
- i__2 = *l - i__ + 1;
- dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &work[*
- l + 1], &c__1);
- i__2 = *l - i__ + 1;
- dlapll_(&i__2, &work[1], &c__1, &work[*l + 1], &c__1, &ssmin);
- error = max(error,ssmin);
- /* L30: */
- }
- if (abs(error) <= min(*tola,*tolb)) {
- goto L50;
- }
- }
- /* End of cycle loop */
- /* L40: */
- }
- /* The algorithm has not converged after MAXIT cycles. */
- *info = 1;
- goto L100;
- L50:
- /* If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged. */
- /* Compute the generalized singular value pairs (ALPHA, BETA), and */
- /* set the triangular matrix R to array A. */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- alpha[i__] = 1.;
- beta[i__] = 0.;
- /* L60: */
- }
- /* Computing MIN */
- i__2 = *l, i__3 = *m - *k;
- i__1 = min(i__2,i__3);
- for (i__ = 1; i__ <= i__1; ++i__) {
- a1 = a[*k + i__ + (*n - *l + i__) * a_dim1];
- b1 = b[i__ + (*n - *l + i__) * b_dim1];
- if (a1 != 0.) {
- gamma = b1 / a1;
- /* change sign if necessary */
- if (gamma < 0.) {
- i__2 = *l - i__ + 1;
- dscal_(&i__2, &c_b43, &b[i__ + (*n - *l + i__) * b_dim1], ldb)
- ;
- if (wantv) {
- dscal_(p, &c_b43, &v[i__ * v_dim1 + 1], &c__1);
- }
- }
- d__1 = abs(gamma);
- dlartg_(&d__1, &c_b14, &beta[*k + i__], &alpha[*k + i__], &rwk);
- if (alpha[*k + i__] >= beta[*k + i__]) {
- i__2 = *l - i__ + 1;
- d__1 = 1. / alpha[*k + i__];
- dscal_(&i__2, &d__1, &a[*k + i__ + (*n - *l + i__) * a_dim1],
- lda);
- } else {
- i__2 = *l - i__ + 1;
- d__1 = 1. / beta[*k + i__];
- dscal_(&i__2, &d__1, &b[i__ + (*n - *l + i__) * b_dim1], ldb);
- i__2 = *l - i__ + 1;
- dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k
- + i__ + (*n - *l + i__) * a_dim1], lda);
- }
- } else {
- alpha[*k + i__] = 0.;
- beta[*k + i__] = 1.;
- i__2 = *l - i__ + 1;
- dcopy_(&i__2, &b[i__ + (*n - *l + i__) * b_dim1], ldb, &a[*k +
- i__ + (*n - *l + i__) * a_dim1], lda);
- }
- /* L70: */
- }
- /* Post-assignment */
- i__1 = *k + *l;
- for (i__ = *m + 1; i__ <= i__1; ++i__) {
- alpha[i__] = 0.;
- beta[i__] = 1.;
- /* L80: */
- }
- if (*k + *l < *n) {
- i__1 = *n;
- for (i__ = *k + *l + 1; i__ <= i__1; ++i__) {
- alpha[i__] = 0.;
- beta[i__] = 0.;
- /* L90: */
- }
- }
- L100:
- *ncycle = kcycle;
- return 0;
- /* End of DTGSJA */
- } /* dtgsja_ */
|