123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712 |
- /* dtgex2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__4 = 4;
- static doublereal c_b5 = 0.;
- static integer c__1 = 1;
- static integer c__2 = 2;
- static doublereal c_b42 = 1.;
- static doublereal c_b48 = -1.;
- static integer c__0 = 0;
- /* Subroutine */ int dtgex2_(logical *wantq, logical *wantz, integer *n,
- doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
- q, integer *ldq, doublereal *z__, integer *ldz, integer *j1, integer *
- n1, integer *n2, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1, i__2;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- doublereal f, g;
- integer i__, m;
- doublereal s[16] /* was [4][4] */, t[16] /* was [4][4] */, be[2], ai[2]
- , ar[2], sa, sb, li[16] /* was [4][4] */, ir[16] /*
- was [4][4] */, ss, ws, eps;
- logical weak;
- doublereal ddum;
- integer idum;
- doublereal taul[4], dsum;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- doublereal taur[4], scpy[16] /* was [4][4] */, tcpy[16] /*
- was [4][4] */;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal scale, bqra21, brqa21;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- doublereal licop[16] /* was [4][4] */;
- integer linfo;
- doublereal ircop[16] /* was [4][4] */, dnorm;
- integer iwork[4];
- extern /* Subroutine */ int dlagv2_(doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *
- , doublereal *, doublereal *, doublereal *), dgeqr2_(integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *), dgerq2_(integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dorg2r_(integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), dorgr2_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *),
- dorm2r_(char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *), dormr2_(char *, char *,
- integer *, integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *), dtgsy2_(char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *);
- extern doublereal dlamch_(char *);
- doublereal dscale;
- extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), dlassq_(integer *
- , doublereal *, integer *, doublereal *, doublereal *);
- logical dtrong;
- doublereal thresh, smlnum;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
- /* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
- /* (A, B) by an orthogonal equivalence transformation. */
- /* (A, B) must be in generalized real Schur canonical form (as returned */
- /* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
- /* diagonal blocks. B is upper triangular. */
- /* Optionally, the matrices Q and Z of generalized Schur vectors are */
- /* updated. */
- /* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */
- /* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */
- /* Arguments */
- /* ========= */
- /* WANTQ (input) LOGICAL */
- /* .TRUE. : update the left transformation matrix Q; */
- /* .FALSE.: do not update Q. */
- /* WANTZ (input) LOGICAL */
- /* .TRUE. : update the right transformation matrix Z; */
- /* .FALSE.: do not update Z. */
- /* N (input) INTEGER */
- /* The order of the matrices A and B. N >= 0. */
- /* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N) */
- /* On entry, the matrix A in the pair (A, B). */
- /* On exit, the updated matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N) */
- /* On entry, the matrix B in the pair (A, B). */
- /* On exit, the updated matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
- /* On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
- /* On exit, the updated matrix Q. */
- /* Not referenced if WANTQ = .FALSE.. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= 1. */
- /* If WANTQ = .TRUE., LDQ >= N. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
- /* On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
- /* On exit, the updated matrix Z. */
- /* Not referenced if WANTZ = .FALSE.. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1. */
- /* If WANTZ = .TRUE., LDZ >= N. */
- /* J1 (input) INTEGER */
- /* The index to the first block (A11, B11). 1 <= J1 <= N. */
- /* N1 (input) INTEGER */
- /* The order of the first block (A11, B11). N1 = 0, 1 or 2. */
- /* N2 (input) INTEGER */
- /* The order of the second block (A22, B22). N2 = 0, 1 or 2. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)). */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
- /* INFO (output) INTEGER */
- /* =0: Successful exit */
- /* >0: If INFO = 1, the transformed matrix (A, B) would be */
- /* too far from generalized Schur form; the blocks are */
- /* not swapped and (A, B) and (Q, Z) are unchanged. */
- /* The problem of swapping is too ill-conditioned. */
- /* <0: If INFO = -16: LWORK is too small. Appropriate value */
- /* for LWORK is returned in WORK(1). */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* Umea University, S-901 87 Umea, Sweden. */
- /* In the current code both weak and strong stability tests are */
- /* performed. The user can omit the strong stability test by changing */
- /* the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
- /* details. */
- /* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
- /* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
- /* Estimation: Theory, Algorithms and Software, */
- /* Report UMINF - 94.04, Department of Computing Science, Umea */
- /* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
- /* Note 87. To appear in Numerical Algorithms, 1996. */
- /* ===================================================================== */
- /* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO */
- /* loops. Sven Hammarling, 1/5/02. */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- /* Function Body */
- *info = 0;
- /* Quick return if possible */
- if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
- return 0;
- }
- if (*n1 > *n || *j1 + *n1 > *n) {
- return 0;
- }
- m = *n1 + *n2;
- /* Computing MAX */
- i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1;
- if (*lwork < max(i__1,i__2)) {
- *info = -16;
- /* Computing MAX */
- i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1;
- work[1] = (doublereal) max(i__1,i__2);
- return 0;
- }
- weak = FALSE_;
- dtrong = FALSE_;
- /* Make a local copy of selected block */
- dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
- dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
- dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
- dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
- /* Compute threshold for testing acceptance of swapping. */
- eps = dlamch_("P");
- smlnum = dlamch_("S") / eps;
- dscale = 0.;
- dsum = 1.;
- dlacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
- dlacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
- dnorm = dscale * sqrt(dsum);
- /* Computing MAX */
- d__1 = eps * 10. * dnorm;
- thresh = max(d__1,smlnum);
- if (m == 2) {
- /* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
- /* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
- /* using Givens rotations and perform the swap tentatively. */
- f = s[5] * t[0] - t[5] * s[0];
- g = s[5] * t[4] - t[5] * s[4];
- sb = abs(t[5]);
- sa = abs(s[5]);
- dlartg_(&f, &g, &ir[4], ir, &ddum);
- ir[1] = -ir[4];
- ir[5] = ir[0];
- drot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
- drot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
- if (sa >= sb) {
- dlartg_(s, &s[1], li, &li[1], &ddum);
- } else {
- dlartg_(t, &t[1], li, &li[1], &ddum);
- }
- drot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
- drot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
- li[5] = li[0];
- li[4] = -li[1];
- /* Weak stability test: */
- /* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
- ws = abs(s[1]) + abs(t[1]);
- weak = ws <= thresh;
- if (! weak) {
- goto L70;
- }
- if (TRUE_) {
- /* Strong stability test: */
- /* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B))) */
- dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- dscale = 0.;
- dsum = 1.;
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
- dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
- ss = dscale * sqrt(dsum);
- dtrong = ss <= thresh;
- if (! dtrong) {
- goto L70;
- }
- }
- /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
- /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
- i__1 = *j1 + 1;
- drot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
- &c__1, ir, &ir[1]);
- i__1 = *j1 + 1;
- drot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
- &c__1, ir, &ir[1]);
- i__1 = *n - *j1 + 1;
- drot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
- lda, li, &li[1]);
- i__1 = *n - *j1 + 1;
- drot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
- ldb, li, &li[1]);
- /* Set N1-by-N2 (2,1) - blocks to ZERO. */
- a[*j1 + 1 + *j1 * a_dim1] = 0.;
- b[*j1 + 1 + *j1 * b_dim1] = 0.;
- /* Accumulate transformations into Q and Z if requested. */
- if (*wantz) {
- drot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
- 1], &c__1, ir, &ir[1]);
- }
- if (*wantq) {
- drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
- &c__1, li, &li[1]);
- }
- /* Exit with INFO = 0 if swap was successfully performed. */
- return 0;
- } else {
- /* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
- /* and 2-by-2 blocks. */
- /* Solve the generalized Sylvester equation */
- /* S11 * R - L * S22 = SCALE * S12 */
- /* T11 * R - L * T22 = SCALE * T12 */
- /* for R and L. Solutions in LI and IR. */
- dlacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
- dlacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
- *n1 + 1 << 2) - 5], &c__4);
- dtgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
- , &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
- t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
- dsum, &dscale, iwork, &idum, &linfo);
- /* Compute orthogonal matrix QL: */
- /* QL' * LI = [ TL ] */
- /* [ 0 ] */
- /* where */
- /* LI = [ -L ] */
- /* [ SCALE * identity(N2) ] */
- i__1 = *n2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
- li[*n1 + i__ + (i__ << 2) - 5] = scale;
- /* L10: */
- }
- dgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- /* Compute orthogonal matrix RQ: */
- /* IR * RQ' = [ 0 TR], */
- /* where IR = [ SCALE * identity(N1), R ] */
- i__1 = *n1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ir[*n2 + i__ + (i__ << 2) - 5] = scale;
- /* L20: */
- }
- dgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- /* Perform the swapping tentatively: */
- dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
- s, &c__4);
- dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
- t, &c__4);
- dlacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
- dlacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
- dlacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
- dlacpy_("F", &m, &m, li, &c__4, licop, &c__4);
- /* Triangularize the B-part by an RQ factorization. */
- /* Apply transformation (from left) to A-part, giving S. */
- dgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
- linfo);
- if (linfo != 0) {
- goto L70;
- }
- dormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
- linfo);
- if (linfo != 0) {
- goto L70;
- }
- /* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
- dscale = 0.;
- dsum = 1.;
- i__1 = *n2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
- /* L30: */
- }
- brqa21 = dscale * sqrt(dsum);
- /* Triangularize the B-part by a QR factorization. */
- /* Apply transformation (from right) to A-part, giving S. */
- dgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
- if (linfo != 0) {
- goto L70;
- }
- dorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
- , info);
- dorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
- 1], info);
- if (linfo != 0) {
- goto L70;
- }
- /* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
- dscale = 0.;
- dsum = 1.;
- i__1 = *n2;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
- dsum);
- /* L40: */
- }
- bqra21 = dscale * sqrt(dsum);
- /* Decide which method to use. */
- /* Weak stability test: */
- /* F-norm(S21) <= O(EPS * F-norm((S, T))) */
- if (bqra21 <= brqa21 && bqra21 <= thresh) {
- dlacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
- dlacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
- dlacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
- dlacpy_("F", &m, &m, licop, &c__4, li, &c__4);
- } else if (brqa21 >= thresh) {
- goto L70;
- }
- /* Set lower triangle of B-part to zero */
- i__1 = m - 1;
- i__2 = m - 1;
- dlaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
- if (TRUE_) {
- /* Strong stability test: */
- /* F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B))) */
- dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- dscale = 0.;
- dsum = 1.;
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
- dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
- + 1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
- c_b42, &work[m * m + 1], &m);
- i__1 = m * m;
- dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
- ss = dscale * sqrt(dsum);
- dtrong = ss <= thresh;
- if (! dtrong) {
- goto L70;
- }
- }
- /* If the swap is accepted ("weakly" and "strongly"), apply the */
- /* transformations and set N1-by-N2 (2,1)-block to zero. */
- dlaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
- /* copy back M-by-M diagonal block starting at index J1 of (A, B) */
- dlacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
- ;
- dlacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
- ;
- dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
- /* Standardize existing 2-by-2 blocks. */
- i__1 = m * m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- /* L50: */
- }
- work[1] = 1.;
- t[0] = 1.;
- idum = *lwork - m * m - 2;
- if (*n2 > 1) {
- dlagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
- ar, ai, be, &work[1], &work[2], t, &t[1]);
- work[m + 1] = -work[2];
- work[m + 2] = work[1];
- t[*n2 + (*n2 << 2) - 5] = t[0];
- t[4] = -t[1];
- }
- work[m * m] = 1.;
- t[m + (m << 2) - 5] = 1.;
- if (*n1 > 1) {
- dlagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
- (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
- &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
- n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
- work[m * m] = work[*n2 * m + *n2 + 1];
- work[m * m - 1] = -work[*n2 * m + *n2 + 2];
- t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
- t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
- }
- dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
- n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
- dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
- a_dim1], lda);
- dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
- n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
- dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
- b_dim1], ldb);
- dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
- work[m * m + 1], &m);
- dlacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
- dgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
- lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
- n2);
- dlacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
- lda);
- dgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
- ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
- n2);
- dlacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
- ldb);
- dgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
- work[1], &m);
- dlacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
- /* Accumulate transformations into Q and Z if requested. */
- if (*wantq) {
- dgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
- &c__4, &c_b5, &work[1], n);
- dlacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
- }
- if (*wantz) {
- dgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
- ir, &c__4, &c_b5, &work[1], n);
- dlacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
- }
- /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
- /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
- i__ = *j1 + m;
- if (i__ <= *n) {
- i__1 = *n - i__ + 1;
- dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
- a_dim1], lda, &c_b5, &work[1], &m);
- i__1 = *n - i__ + 1;
- dlacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
- lda);
- i__1 = *n - i__ + 1;
- dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
- b_dim1], lda, &c_b5, &work[1], &m);
- i__1 = *n - i__ + 1;
- dlacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
- ldb);
- }
- i__ = *j1 - 1;
- if (i__ > 0) {
- dgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
- ir, &c__4, &c_b5, &work[1], &i__);
- dlacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
- lda);
- dgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
- ir, &c__4, &c_b5, &work[1], &i__);
- dlacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
- ldb);
- }
- /* Exit with INFO = 0 if swap was successfully performed. */
- return 0;
- }
- /* Exit with INFO = 1 if swap was rejected. */
- L70:
- *info = 1;
- return 0;
- /* End of DTGEX2 */
- } /* dtgex2_ */
|