123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- /* dsytrf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__2 = 2;
- /* Subroutine */ int dsytrf_(char *uplo, integer *n, doublereal *a, integer *
- lda, integer *ipiv, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- /* Local variables */
- integer j, k, kb, nb, iws;
- extern logical lsame_(char *, char *);
- integer nbmin, iinfo;
- logical upper;
- extern /* Subroutine */ int dsytf2_(char *, integer *, doublereal *,
- integer *, integer *, integer *), xerbla_(char *, integer
- *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int dlasyf_(char *, integer *, integer *, integer
- *, doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- integer ldwork, lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYTRF computes the factorization of a real symmetric matrix A using */
- /* the Bunch-Kaufman diagonal pivoting method. The form of the */
- /* factorization is */
- /* A = U*D*U**T or A = L*D*L**T */
- /* where U (or L) is a product of permutation and unit upper (lower) */
- /* triangular matrices, and D is symmetric and block diagonal with */
- /* 1-by-1 and 2-by-2 diagonal blocks. */
- /* This is the blocked version of the algorithm, calling Level 3 BLAS. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* N-by-N upper triangular part of A contains the upper */
- /* triangular part of the matrix A, and the strictly lower */
- /* triangular part of A is not referenced. If UPLO = 'L', the */
- /* leading N-by-N lower triangular part of A contains the lower */
- /* triangular part of the matrix A, and the strictly upper */
- /* triangular part of A is not referenced. */
- /* On exit, the block diagonal matrix D and the multipliers used */
- /* to obtain the factor U or L (see below for further details). */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* IPIV (output) INTEGER array, dimension (N) */
- /* Details of the interchanges and the block structure of D. */
- /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
- /* interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
- /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
- /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
- /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
- /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The length of WORK. LWORK >=1. For best performance */
- /* LWORK >= N*NB, where NB is the block size returned by ILAENV. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
- /* has been completed, but the block diagonal matrix D is */
- /* exactly singular, and division by zero will occur if it */
- /* is used to solve a system of equations. */
- /* Further Details */
- /* =============== */
- /* If UPLO = 'U', then A = U*D*U', where */
- /* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
- /* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
- /* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
- /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* ( I v 0 ) k-s */
- /* U(k) = ( 0 I 0 ) s */
- /* ( 0 0 I ) n-k */
- /* k-s s n-k */
- /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
- /* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
- /* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
- /* If UPLO = 'L', then A = L*D*L', where */
- /* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
- /* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
- /* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
- /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
- /* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
- /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
- /* ( I 0 0 ) k-1 */
- /* L(k) = ( 0 I 0 ) s */
- /* ( 0 v I ) n-k-s+1 */
- /* k-1 s n-k-s+1 */
- /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
- /* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
- /* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --ipiv;
- --work;
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- } else if (*lwork < 1 && ! lquery) {
- *info = -7;
- }
- if (*info == 0) {
- /* Determine the block size */
- nb = ilaenv_(&c__1, "DSYTRF", uplo, n, &c_n1, &c_n1, &c_n1);
- lwkopt = *n * nb;
- work[1] = (doublereal) lwkopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSYTRF", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- nbmin = 2;
- ldwork = *n;
- if (nb > 1 && nb < *n) {
- iws = ldwork * nb;
- if (*lwork < iws) {
- /* Computing MAX */
- i__1 = *lwork / ldwork;
- nb = max(i__1,1);
- /* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "DSYTRF", uplo, n, &c_n1, &c_n1, &
- c_n1);
- nbmin = max(i__1,i__2);
- }
- } else {
- iws = 1;
- }
- if (nb < nbmin) {
- nb = *n;
- }
- if (upper) {
- /* Factorize A as U*D*U' using the upper triangle of A */
- /* K is the main loop index, decreasing from N to 1 in steps of */
- /* KB, where KB is the number of columns factorized by DLASYF; */
- /* KB is either NB or NB-1, or K for the last block */
- k = *n;
- L10:
- /* If K < 1, exit from loop */
- if (k < 1) {
- goto L40;
- }
- if (k > nb) {
- /* Factorize columns k-kb+1:k of A and use blocked code to */
- /* update columns 1:k-kb */
- dlasyf_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &work[1],
- &ldwork, &iinfo);
- } else {
- /* Use unblocked code to factorize columns 1:k of A */
- dsytf2_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo);
- kb = k;
- }
- /* Set INFO on the first occurrence of a zero pivot */
- if (*info == 0 && iinfo > 0) {
- *info = iinfo;
- }
- /* Decrease K and return to the start of the main loop */
- k -= kb;
- goto L10;
- } else {
- /* Factorize A as L*D*L' using the lower triangle of A */
- /* K is the main loop index, increasing from 1 to N in steps of */
- /* KB, where KB is the number of columns factorized by DLASYF; */
- /* KB is either NB or NB-1, or N-K+1 for the last block */
- k = 1;
- L20:
- /* If K > N, exit from loop */
- if (k > *n) {
- goto L40;
- }
- if (k <= *n - nb) {
- /* Factorize columns k:k+kb-1 of A and use blocked code to */
- /* update columns k+kb:n */
- i__1 = *n - k + 1;
- dlasyf_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &ipiv[k],
- &work[1], &ldwork, &iinfo);
- } else {
- /* Use unblocked code to factorize columns k:n of A */
- i__1 = *n - k + 1;
- dsytf2_(uplo, &i__1, &a[k + k * a_dim1], lda, &ipiv[k], &iinfo);
- kb = *n - k + 1;
- }
- /* Set INFO on the first occurrence of a zero pivot */
- if (*info == 0 && iinfo > 0) {
- *info = iinfo + k - 1;
- }
- /* Adjust IPIV */
- i__1 = k + kb - 1;
- for (j = k; j <= i__1; ++j) {
- if (ipiv[j] > 0) {
- ipiv[j] = ipiv[j] + k - 1;
- } else {
- ipiv[j] = ipiv[j] - k + 1;
- }
- /* L30: */
- }
- /* Increase K and return to the start of the main loop */
- k += kb;
- goto L20;
- }
- L40:
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DSYTRF */
- } /* dsytrf_ */
|