123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653 |
- /* dsyevr.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__10 = 10;
- static integer c__1 = 1;
- static integer c__2 = 2;
- static integer c__3 = 3;
- static integer c__4 = 4;
- static integer c_n1 = -1;
- /* Subroutine */ int dsyevr_(char *jobz, char *range, char *uplo, integer *n,
- doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *
- il, integer *iu, doublereal *abstol, integer *m, doublereal *w,
- doublereal *z__, integer *ldz, integer *isuppz, doublereal *work,
- integer *lwork, integer *iwork, integer *liwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, nb, jj;
- doublereal eps, vll, vuu, tmp1;
- integer indd, inde;
- doublereal anrm;
- integer imax;
- doublereal rmin, rmax;
- integer inddd, indee;
- extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal sigma;
- extern logical lsame_(char *, char *);
- integer iinfo;
- char order[1];
- integer indwk;
- extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dswap_(integer *, doublereal *, integer
- *, doublereal *, integer *);
- integer lwmin;
- logical lower, wantz;
- extern doublereal dlamch_(char *);
- logical alleig, indeig;
- integer iscale, ieeeok, indibl, indifl;
- logical valeig;
- doublereal safmin;
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- doublereal abstll, bignum;
- integer indtau, indisp;
- extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *),
- dsterf_(integer *, doublereal *, doublereal *, integer *);
- integer indiwo, indwkn;
- extern doublereal dlansy_(char *, char *, integer *, doublereal *,
- integer *, doublereal *);
- extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *, doublereal *, integer *, integer *),
- dstemr_(char *, char *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- logical *, doublereal *, integer *, integer *, integer *, integer
- *);
- integer liwmin;
- logical tryrac;
- extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- integer llwrkn, llwork, nsplit;
- doublereal smlnum;
- extern /* Subroutine */ int dsytrd_(char *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *);
- integer lwkopt;
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYEVR computes selected eigenvalues and, optionally, eigenvectors */
- /* of a real symmetric matrix A. Eigenvalues and eigenvectors can be */
- /* selected by specifying either a range of values or a range of */
- /* indices for the desired eigenvalues. */
- /* DSYEVR first reduces the matrix A to tridiagonal form T with a call */
- /* to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute */
- /* the eigenspectrum using Relatively Robust Representations. DSTEMR */
- /* computes eigenvalues by the dqds algorithm, while orthogonal */
- /* eigenvectors are computed from various "good" L D L^T representations */
- /* (also known as Relatively Robust Representations). Gram-Schmidt */
- /* orthogonalization is avoided as far as possible. More specifically, */
- /* the various steps of the algorithm are as follows. */
- /* For each unreduced block (submatrix) of T, */
- /* (a) Compute T - sigma I = L D L^T, so that L and D */
- /* define all the wanted eigenvalues to high relative accuracy. */
- /* This means that small relative changes in the entries of D and L */
- /* cause only small relative changes in the eigenvalues and */
- /* eigenvectors. The standard (unfactored) representation of the */
- /* tridiagonal matrix T does not have this property in general. */
- /* (b) Compute the eigenvalues to suitable accuracy. */
- /* If the eigenvectors are desired, the algorithm attains full */
- /* accuracy of the computed eigenvalues only right before */
- /* the corresponding vectors have to be computed, see steps c) and d). */
- /* (c) For each cluster of close eigenvalues, select a new */
- /* shift close to the cluster, find a new factorization, and refine */
- /* the shifted eigenvalues to suitable accuracy. */
- /* (d) For each eigenvalue with a large enough relative separation compute */
- /* the corresponding eigenvector by forming a rank revealing twisted */
- /* factorization. Go back to (c) for any clusters that remain. */
- /* The desired accuracy of the output can be specified by the input */
- /* parameter ABSTOL. */
- /* For more details, see DSTEMR's documentation and: */
- /* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
- /* to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
- /* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
- /* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
- /* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
- /* 2004. Also LAPACK Working Note 154. */
- /* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
- /* tridiagonal eigenvalue/eigenvector problem", */
- /* Computer Science Division Technical Report No. UCB/CSD-97-971, */
- /* UC Berkeley, May 1997. */
- /* Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested */
- /* on machines which conform to the ieee-754 floating point standard. */
- /* DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and */
- /* when partial spectrum requests are made. */
- /* Normal execution of DSTEMR may create NaNs and infinities and */
- /* hence may abort due to a floating point exception in environments */
- /* which do not handle NaNs and infinities in the ieee standard default */
- /* manner. */
- /* Arguments */
- /* ========= */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* RANGE (input) CHARACTER*1 */
- /* = 'A': all eigenvalues will be found. */
- /* = 'V': all eigenvalues in the half-open interval (VL,VU] */
- /* will be found. */
- /* = 'I': the IL-th through IU-th eigenvalues will be found. */
- /* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
- /* ********* DSTEIN are called */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the */
- /* leading N-by-N upper triangular part of A contains the */
- /* upper triangular part of the matrix A. If UPLO = 'L', */
- /* the leading N-by-N lower triangular part of A contains */
- /* the lower triangular part of the matrix A. */
- /* On exit, the lower triangle (if UPLO='L') or the upper */
- /* triangle (if UPLO='U') of A, including the diagonal, is */
- /* destroyed. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* VL (input) DOUBLE PRECISION */
- /* VU (input) DOUBLE PRECISION */
- /* If RANGE='V', the lower and upper bounds of the interval to */
- /* be searched for eigenvalues. VL < VU. */
- /* Not referenced if RANGE = 'A' or 'I'. */
- /* IL (input) INTEGER */
- /* IU (input) INTEGER */
- /* If RANGE='I', the indices (in ascending order) of the */
- /* smallest and largest eigenvalues to be returned. */
- /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
- /* Not referenced if RANGE = 'A' or 'V'. */
- /* ABSTOL (input) DOUBLE PRECISION */
- /* The absolute error tolerance for the eigenvalues. */
- /* An approximate eigenvalue is accepted as converged */
- /* when it is determined to lie in an interval [a,b] */
- /* of width less than or equal to */
- /* ABSTOL + EPS * max( |a|,|b| ) , */
- /* where EPS is the machine precision. If ABSTOL is less than */
- /* or equal to zero, then EPS*|T| will be used in its place, */
- /* where |T| is the 1-norm of the tridiagonal matrix obtained */
- /* by reducing A to tridiagonal form. */
- /* See "Computing Small Singular Values of Bidiagonal Matrices */
- /* with Guaranteed High Relative Accuracy," by Demmel and */
- /* Kahan, LAPACK Working Note #3. */
- /* If high relative accuracy is important, set ABSTOL to */
- /* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */
- /* eigenvalues are computed to high relative accuracy when */
- /* possible in future releases. The current code does not */
- /* make any guarantees about high relative accuracy, but */
- /* future releases will. See J. Barlow and J. Demmel, */
- /* "Computing Accurate Eigensystems of Scaled Diagonally */
- /* Dominant Matrices", LAPACK Working Note #7, for a discussion */
- /* of which matrices define their eigenvalues to high relative */
- /* accuracy. */
- /* M (output) INTEGER */
- /* The total number of eigenvalues found. 0 <= M <= N. */
- /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* The first M elements contain the selected eigenvalues in */
- /* ascending order. */
- /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
- /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
- /* contain the orthonormal eigenvectors of the matrix A */
- /* corresponding to the selected eigenvalues, with the i-th */
- /* column of Z holding the eigenvector associated with W(i). */
- /* If JOBZ = 'N', then Z is not referenced. */
- /* Note: the user must ensure that at least max(1,M) columns are */
- /* supplied in the array Z; if RANGE = 'V', the exact value of M */
- /* is not known in advance and an upper bound must be used. */
- /* Supplying N columns is always safe. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1, and if */
- /* JOBZ = 'V', LDZ >= max(1,N). */
- /* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */
- /* The support of the eigenvectors in Z, i.e., the indices */
- /* indicating the nonzero elements in Z. The i-th eigenvector */
- /* is nonzero only in elements ISUPPZ( 2*i-1 ) through */
- /* ISUPPZ( 2*i ). */
- /* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,26*N). */
- /* For optimal efficiency, LWORK >= (NB+6)*N, */
- /* where NB is the max of the blocksize for DSYTRD and DORMTR */
- /* returned by ILAENV. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. LIWORK >= max(1,10*N). */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the optimal size of the IWORK array, */
- /* returns this value as the first entry of the IWORK array, and */
- /* no error message related to LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: Internal error */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Inderjit Dhillon, IBM Almaden, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* Ken Stanley, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* Jason Riedy, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --w;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --isuppz;
- --work;
- --iwork;
- /* Function Body */
- ieeeok = ilaenv_(&c__10, "DSYEVR", "N", &c__1, &c__2, &c__3, &c__4);
- lower = lsame_(uplo, "L");
- wantz = lsame_(jobz, "V");
- alleig = lsame_(range, "A");
- valeig = lsame_(range, "V");
- indeig = lsame_(range, "I");
- lquery = *lwork == -1 || *liwork == -1;
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 26;
- lwmin = max(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 10;
- liwmin = max(i__1,i__2);
- *info = 0;
- if (! (wantz || lsame_(jobz, "N"))) {
- *info = -1;
- } else if (! (alleig || valeig || indeig)) {
- *info = -2;
- } else if (! (lower || lsame_(uplo, "U"))) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < max(1,*n)) {
- *info = -6;
- } else {
- if (valeig) {
- if (*n > 0 && *vu <= *vl) {
- *info = -8;
- }
- } else if (indeig) {
- if (*il < 1 || *il > max(1,*n)) {
- *info = -9;
- } else if (*iu < min(*n,*il) || *iu > *n) {
- *info = -10;
- }
- }
- }
- if (*info == 0) {
- if (*ldz < 1 || wantz && *ldz < *n) {
- *info = -15;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -18;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -20;
- }
- }
- if (*info == 0) {
- nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
- /* Computing MAX */
- i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, &
- c_n1);
- nb = max(i__1,i__2);
- /* Computing MAX */
- i__1 = (nb + 1) * *n;
- lwkopt = max(i__1,lwmin);
- work[1] = (doublereal) lwkopt;
- iwork[1] = liwmin;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSYEVR", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- *m = 0;
- if (*n == 0) {
- work[1] = 1.;
- return 0;
- }
- if (*n == 1) {
- work[1] = 7.;
- if (alleig || indeig) {
- *m = 1;
- w[1] = a[a_dim1 + 1];
- } else {
- if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
- *m = 1;
- w[1] = a[a_dim1 + 1];
- }
- }
- if (wantz) {
- z__[z_dim1 + 1] = 1.;
- }
- return 0;
- }
- /* Get machine constants. */
- safmin = dlamch_("Safe minimum");
- eps = dlamch_("Precision");
- smlnum = safmin / eps;
- bignum = 1. / smlnum;
- rmin = sqrt(smlnum);
- /* Computing MIN */
- d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
- rmax = min(d__1,d__2);
- /* Scale matrix to allowable range, if necessary. */
- iscale = 0;
- abstll = *abstol;
- vll = *vl;
- vuu = *vu;
- anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
- if (anrm > 0. && anrm < rmin) {
- iscale = 1;
- sigma = rmin / anrm;
- } else if (anrm > rmax) {
- iscale = 1;
- sigma = rmax / anrm;
- }
- if (iscale == 1) {
- if (lower) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n - j + 1;
- dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
- /* L10: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
- /* L20: */
- }
- }
- if (*abstol > 0.) {
- abstll = *abstol * sigma;
- }
- if (valeig) {
- vll = *vl * sigma;
- vuu = *vu * sigma;
- }
- }
- /* Initialize indices into workspaces. Note: The IWORK indices are */
- /* used only if DSTERF or DSTEMR fail. */
- /* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
- /* elementary reflectors used in DSYTRD. */
- indtau = 1;
- /* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
- indd = indtau + *n;
- /* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
- /* tridiagonal matrix from DSYTRD. */
- inde = indd + *n;
- /* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
- /* -written by DSTEMR (the DSTERF path copies the diagonal to W). */
- inddd = inde + *n;
- /* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
- /* -written while computing the eigenvalues in DSTERF and DSTEMR. */
- indee = inddd + *n;
- /* INDWK is the starting offset of the left-over workspace, and */
- /* LLWORK is the remaining workspace size. */
- indwk = indee + *n;
- llwork = *lwork - indwk + 1;
- /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
- /* stores the block indices of each of the M<=N eigenvalues. */
- indibl = 1;
- /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
- /* stores the starting and finishing indices of each block. */
- indisp = indibl + *n;
- /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
- /* that corresponding to eigenvectors that fail to converge in */
- /* DSTEIN. This information is discarded; if any fail, the driver */
- /* returns INFO > 0. */
- indifl = indisp + *n;
- /* INDIWO is the offset of the remaining integer workspace. */
- indiwo = indisp + *n;
- /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
- dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
- indtau], &work[indwk], &llwork, &iinfo);
- /* If all eigenvalues are desired */
- /* then call DSTERF or DSTEMR and DORMTR. */
- if ((alleig || indeig && *il == 1 && *iu == *n) && ieeeok == 1) {
- if (! wantz) {
- dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
- i__1 = *n - 1;
- dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
- dsterf_(n, &w[1], &work[indee], info);
- } else {
- i__1 = *n - 1;
- dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
- dcopy_(n, &work[indd], &c__1, &work[inddd], &c__1);
- if (*abstol <= *n * 2. * eps) {
- tryrac = TRUE_;
- } else {
- tryrac = FALSE_;
- }
- dstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu,
- m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
- work[indwk], lwork, &iwork[1], liwork, info);
- /* Apply orthogonal matrix used in reduction to tridiagonal */
- /* form to eigenvectors returned by DSTEIN. */
- if (wantz && *info == 0) {
- indwkn = inde;
- llwrkn = *lwork - indwkn + 1;
- dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
- , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
- }
- }
- if (*info == 0) {
- /* Everything worked. Skip DSTEBZ/DSTEIN. IWORK(:) are */
- /* undefined. */
- *m = *n;
- goto L30;
- }
- *info = 0;
- }
- /* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
- /* Also call DSTEBZ and DSTEIN if DSTEMR fails. */
- if (wantz) {
- *(unsigned char *)order = 'B';
- } else {
- *(unsigned char *)order = 'E';
- }
- dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
- inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
- indwk], &iwork[indiwo], info);
- if (wantz) {
- dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
- indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
- iwork[indifl], info);
- /* Apply orthogonal matrix used in reduction to tridiagonal */
- /* form to eigenvectors returned by DSTEIN. */
- indwkn = inde;
- llwrkn = *lwork - indwkn + 1;
- dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
- z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
- }
- /* If matrix was scaled, then rescale eigenvalues appropriately. */
- /* Jump here if DSTEMR/DSTEIN succeeded. */
- L30:
- if (iscale == 1) {
- if (*info == 0) {
- imax = *m;
- } else {
- imax = *info - 1;
- }
- d__1 = 1. / sigma;
- dscal_(&imax, &d__1, &w[1], &c__1);
- }
- /* If eigenvalues are not in order, then sort them, along with */
- /* eigenvectors. Note: We do not sort the IFAIL portion of IWORK. */
- /* It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do */
- /* not return this detailed information to the user. */
- if (wantz) {
- i__1 = *m - 1;
- for (j = 1; j <= i__1; ++j) {
- i__ = 0;
- tmp1 = w[j];
- i__2 = *m;
- for (jj = j + 1; jj <= i__2; ++jj) {
- if (w[jj] < tmp1) {
- i__ = jj;
- tmp1 = w[jj];
- }
- /* L40: */
- }
- if (i__ != 0) {
- w[i__] = w[j];
- w[j] = tmp1;
- dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
- &c__1);
- }
- /* L50: */
- }
- }
- /* Set WORK(1) to optimal workspace size. */
- work[1] = (doublereal) lwkopt;
- iwork[1] = liwmin;
- return 0;
- /* End of DSYEVR */
- } /* dsyevr_ */
|