dlauum.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. /* dlauum.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. static integer c_n1 = -1;
  16. static doublereal c_b15 = 1.;
  17. /* Subroutine */ int dlauum_(char *uplo, integer *n, doublereal *a, integer *
  18. lda, integer *info)
  19. {
  20. /* System generated locals */
  21. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  22. /* Local variables */
  23. integer i__, ib, nb;
  24. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  25. integer *, doublereal *, doublereal *, integer *, doublereal *,
  26. integer *, doublereal *, doublereal *, integer *);
  27. extern logical lsame_(char *, char *);
  28. extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *,
  29. integer *, integer *, doublereal *, doublereal *, integer *,
  30. doublereal *, integer *);
  31. logical upper;
  32. extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
  33. doublereal *, doublereal *, integer *, doublereal *, doublereal *,
  34. integer *), dlauu2_(char *, integer *,
  35. doublereal *, integer *, integer *), xerbla_(char *,
  36. integer *);
  37. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  38. integer *, integer *);
  39. /* -- LAPACK auxiliary routine (version 3.2) -- */
  40. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  41. /* November 2006 */
  42. /* .. Scalar Arguments .. */
  43. /* .. */
  44. /* .. Array Arguments .. */
  45. /* .. */
  46. /* Purpose */
  47. /* ======= */
  48. /* DLAUUM computes the product U * U' or L' * L, where the triangular */
  49. /* factor U or L is stored in the upper or lower triangular part of */
  50. /* the array A. */
  51. /* If UPLO = 'U' or 'u' then the upper triangle of the result is stored, */
  52. /* overwriting the factor U in A. */
  53. /* If UPLO = 'L' or 'l' then the lower triangle of the result is stored, */
  54. /* overwriting the factor L in A. */
  55. /* This is the blocked form of the algorithm, calling Level 3 BLAS. */
  56. /* Arguments */
  57. /* ========= */
  58. /* UPLO (input) CHARACTER*1 */
  59. /* Specifies whether the triangular factor stored in the array A */
  60. /* is upper or lower triangular: */
  61. /* = 'U': Upper triangular */
  62. /* = 'L': Lower triangular */
  63. /* N (input) INTEGER */
  64. /* The order of the triangular factor U or L. N >= 0. */
  65. /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
  66. /* On entry, the triangular factor U or L. */
  67. /* On exit, if UPLO = 'U', the upper triangle of A is */
  68. /* overwritten with the upper triangle of the product U * U'; */
  69. /* if UPLO = 'L', the lower triangle of A is overwritten with */
  70. /* the lower triangle of the product L' * L. */
  71. /* LDA (input) INTEGER */
  72. /* The leading dimension of the array A. LDA >= max(1,N). */
  73. /* INFO (output) INTEGER */
  74. /* = 0: successful exit */
  75. /* < 0: if INFO = -k, the k-th argument had an illegal value */
  76. /* ===================================================================== */
  77. /* .. Parameters .. */
  78. /* .. */
  79. /* .. Local Scalars .. */
  80. /* .. */
  81. /* .. External Functions .. */
  82. /* .. */
  83. /* .. External Subroutines .. */
  84. /* .. */
  85. /* .. Intrinsic Functions .. */
  86. /* .. */
  87. /* .. Executable Statements .. */
  88. /* Test the input parameters. */
  89. /* Parameter adjustments */
  90. a_dim1 = *lda;
  91. a_offset = 1 + a_dim1;
  92. a -= a_offset;
  93. /* Function Body */
  94. *info = 0;
  95. upper = lsame_(uplo, "U");
  96. if (! upper && ! lsame_(uplo, "L")) {
  97. *info = -1;
  98. } else if (*n < 0) {
  99. *info = -2;
  100. } else if (*lda < max(1,*n)) {
  101. *info = -4;
  102. }
  103. if (*info != 0) {
  104. i__1 = -(*info);
  105. xerbla_("DLAUUM", &i__1);
  106. return 0;
  107. }
  108. /* Quick return if possible */
  109. if (*n == 0) {
  110. return 0;
  111. }
  112. /* Determine the block size for this environment. */
  113. nb = ilaenv_(&c__1, "DLAUUM", uplo, n, &c_n1, &c_n1, &c_n1);
  114. if (nb <= 1 || nb >= *n) {
  115. /* Use unblocked code */
  116. dlauu2_(uplo, n, &a[a_offset], lda, info);
  117. } else {
  118. /* Use blocked code */
  119. if (upper) {
  120. /* Compute the product U * U'. */
  121. i__1 = *n;
  122. i__2 = nb;
  123. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  124. /* Computing MIN */
  125. i__3 = nb, i__4 = *n - i__ + 1;
  126. ib = min(i__3,i__4);
  127. i__3 = i__ - 1;
  128. dtrmm_("Right", "Upper", "Transpose", "Non-unit", &i__3, &ib,
  129. &c_b15, &a[i__ + i__ * a_dim1], lda, &a[i__ * a_dim1
  130. + 1], lda)
  131. ;
  132. dlauu2_("Upper", &ib, &a[i__ + i__ * a_dim1], lda, info);
  133. if (i__ + ib <= *n) {
  134. i__3 = i__ - 1;
  135. i__4 = *n - i__ - ib + 1;
  136. dgemm_("No transpose", "Transpose", &i__3, &ib, &i__4, &
  137. c_b15, &a[(i__ + ib) * a_dim1 + 1], lda, &a[i__ +
  138. (i__ + ib) * a_dim1], lda, &c_b15, &a[i__ *
  139. a_dim1 + 1], lda);
  140. i__3 = *n - i__ - ib + 1;
  141. dsyrk_("Upper", "No transpose", &ib, &i__3, &c_b15, &a[
  142. i__ + (i__ + ib) * a_dim1], lda, &c_b15, &a[i__ +
  143. i__ * a_dim1], lda);
  144. }
  145. /* L10: */
  146. }
  147. } else {
  148. /* Compute the product L' * L. */
  149. i__2 = *n;
  150. i__1 = nb;
  151. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  152. /* Computing MIN */
  153. i__3 = nb, i__4 = *n - i__ + 1;
  154. ib = min(i__3,i__4);
  155. i__3 = i__ - 1;
  156. dtrmm_("Left", "Lower", "Transpose", "Non-unit", &ib, &i__3, &
  157. c_b15, &a[i__ + i__ * a_dim1], lda, &a[i__ + a_dim1],
  158. lda);
  159. dlauu2_("Lower", &ib, &a[i__ + i__ * a_dim1], lda, info);
  160. if (i__ + ib <= *n) {
  161. i__3 = i__ - 1;
  162. i__4 = *n - i__ - ib + 1;
  163. dgemm_("Transpose", "No transpose", &ib, &i__3, &i__4, &
  164. c_b15, &a[i__ + ib + i__ * a_dim1], lda, &a[i__ +
  165. ib + a_dim1], lda, &c_b15, &a[i__ + a_dim1], lda);
  166. i__3 = *n - i__ - ib + 1;
  167. dsyrk_("Lower", "Transpose", &ib, &i__3, &c_b15, &a[i__ +
  168. ib + i__ * a_dim1], lda, &c_b15, &a[i__ + i__ *
  169. a_dim1], lda);
  170. }
  171. /* L20: */
  172. }
  173. }
  174. }
  175. return 0;
  176. /* End of DLAUUM */
  177. } /* dlauum_ */