123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 |
- /* dlasq4.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int dlasq4_(integer *i0, integer *n0, doublereal *z__,
- integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1,
- doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2,
- doublereal *tau, integer *ttype, doublereal *g)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- doublereal s, a2, b1, b2;
- integer i4, nn, np;
- doublereal gam, gap1, gap2;
- /* -- LAPACK routine (version 3.2) -- */
- /* -- Contributed by Osni Marques of the Lawrence Berkeley National -- */
- /* -- Laboratory and Beresford Parlett of the Univ. of California at -- */
- /* -- Berkeley -- */
- /* -- November 2008 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLASQ4 computes an approximation TAU to the smallest eigenvalue */
- /* using values of d from the previous transform. */
- /* I0 (input) INTEGER */
- /* First index. */
- /* N0 (input) INTEGER */
- /* Last index. */
- /* Z (input) DOUBLE PRECISION array, dimension ( 4*N ) */
- /* Z holds the qd array. */
- /* PP (input) INTEGER */
- /* PP=0 for ping, PP=1 for pong. */
- /* NOIN (input) INTEGER */
- /* The value of N0 at start of EIGTEST. */
- /* DMIN (input) DOUBLE PRECISION */
- /* Minimum value of d. */
- /* DMIN1 (input) DOUBLE PRECISION */
- /* Minimum value of d, excluding D( N0 ). */
- /* DMIN2 (input) DOUBLE PRECISION */
- /* Minimum value of d, excluding D( N0 ) and D( N0-1 ). */
- /* DN (input) DOUBLE PRECISION */
- /* d(N) */
- /* DN1 (input) DOUBLE PRECISION */
- /* d(N-1) */
- /* DN2 (input) DOUBLE PRECISION */
- /* d(N-2) */
- /* TAU (output) DOUBLE PRECISION */
- /* This is the shift. */
- /* TTYPE (output) INTEGER */
- /* Shift type. */
- /* G (input/output) REAL */
- /* G is passed as an argument in order to save its value between */
- /* calls to DLASQ4. */
- /* Further Details */
- /* =============== */
- /* CNST1 = 9/16 */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* A negative DMIN forces the shift to take that absolute value */
- /* TTYPE records the type of shift. */
- /* Parameter adjustments */
- --z__;
- /* Function Body */
- if (*dmin__ <= 0.) {
- *tau = -(*dmin__);
- *ttype = -1;
- return 0;
- }
- nn = (*n0 << 2) + *pp;
- if (*n0in == *n0) {
- /* No eigenvalues deflated. */
- if (*dmin__ == *dn || *dmin__ == *dn1) {
- b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
- b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
- a2 = z__[nn - 7] + z__[nn - 5];
- /* Cases 2 and 3. */
- if (*dmin__ == *dn && *dmin1 == *dn1) {
- gap2 = *dmin2 - a2 - *dmin2 * .25;
- if (gap2 > 0. && gap2 > b2) {
- gap1 = a2 - *dn - b2 / gap2 * b2;
- } else {
- gap1 = a2 - *dn - (b1 + b2);
- }
- if (gap1 > 0. && gap1 > b1) {
- /* Computing MAX */
- d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;
- s = max(d__1,d__2);
- *ttype = -2;
- } else {
- s = 0.;
- if (*dn > b1) {
- s = *dn - b1;
- }
- if (a2 > b1 + b2) {
- /* Computing MIN */
- d__1 = s, d__2 = a2 - (b1 + b2);
- s = min(d__1,d__2);
- }
- /* Computing MAX */
- d__1 = s, d__2 = *dmin__ * .333;
- s = max(d__1,d__2);
- *ttype = -3;
- }
- } else {
- /* Case 4. */
- *ttype = -4;
- s = *dmin__ * .25;
- if (*dmin__ == *dn) {
- gam = *dn;
- a2 = 0.;
- if (z__[nn - 5] > z__[nn - 7]) {
- return 0;
- }
- b2 = z__[nn - 5] / z__[nn - 7];
- np = nn - 9;
- } else {
- np = nn - (*pp << 1);
- b2 = z__[np - 2];
- gam = *dn1;
- if (z__[np - 4] > z__[np - 2]) {
- return 0;
- }
- a2 = z__[np - 4] / z__[np - 2];
- if (z__[nn - 9] > z__[nn - 11]) {
- return 0;
- }
- b2 = z__[nn - 9] / z__[nn - 11];
- np = nn - 13;
- }
- /* Approximate contribution to norm squared from I < NN-1. */
- a2 += b2;
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = np; i4 >= i__1; i4 += -4) {
- if (b2 == 0.) {
- goto L20;
- }
- b1 = b2;
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b2 *= z__[i4] / z__[i4 - 2];
- a2 += b2;
- if (max(b2,b1) * 100. < a2 || .563 < a2) {
- goto L20;
- }
- /* L10: */
- }
- L20:
- a2 *= 1.05;
- /* Rayleigh quotient residual bound. */
- if (a2 < .563) {
- s = gam * (1. - sqrt(a2)) / (a2 + 1.);
- }
- }
- } else if (*dmin__ == *dn2) {
- /* Case 5. */
- *ttype = -5;
- s = *dmin__ * .25;
- /* Compute contribution to norm squared from I > NN-2. */
- np = nn - (*pp << 1);
- b1 = z__[np - 2];
- b2 = z__[np - 6];
- gam = *dn2;
- if (z__[np - 8] > b2 || z__[np - 4] > b1) {
- return 0;
- }
- a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);
- /* Approximate contribution to norm squared from I < NN-2. */
- if (*n0 - *i0 > 2) {
- b2 = z__[nn - 13] / z__[nn - 15];
- a2 += b2;
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
- if (b2 == 0.) {
- goto L40;
- }
- b1 = b2;
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b2 *= z__[i4] / z__[i4 - 2];
- a2 += b2;
- if (max(b2,b1) * 100. < a2 || .563 < a2) {
- goto L40;
- }
- /* L30: */
- }
- L40:
- a2 *= 1.05;
- }
- if (a2 < .563) {
- s = gam * (1. - sqrt(a2)) / (a2 + 1.);
- }
- } else {
- /* Case 6, no information to guide us. */
- if (*ttype == -6) {
- *g += (1. - *g) * .333;
- } else if (*ttype == -18) {
- *g = .083250000000000005;
- } else {
- *g = .25;
- }
- s = *g * *dmin__;
- *ttype = -6;
- }
- } else if (*n0in == *n0 + 1) {
- /* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
- if (*dmin1 == *dn1 && *dmin2 == *dn2) {
- /* Cases 7 and 8. */
- *ttype = -7;
- s = *dmin1 * .333;
- if (z__[nn - 5] > z__[nn - 7]) {
- return 0;
- }
- b1 = z__[nn - 5] / z__[nn - 7];
- b2 = b1;
- if (b2 == 0.) {
- goto L60;
- }
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
- a2 = b1;
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b1 *= z__[i4] / z__[i4 - 2];
- b2 += b1;
- if (max(b1,a2) * 100. < b2) {
- goto L60;
- }
- /* L50: */
- }
- L60:
- b2 = sqrt(b2 * 1.05);
- /* Computing 2nd power */
- d__1 = b2;
- a2 = *dmin1 / (d__1 * d__1 + 1.);
- gap2 = *dmin2 * .5 - a2;
- if (gap2 > 0. && gap2 > b2 * a2) {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
- s = max(d__1,d__2);
- } else {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
- s = max(d__1,d__2);
- *ttype = -8;
- }
- } else {
- /* Case 9. */
- s = *dmin1 * .25;
- if (*dmin1 == *dn1) {
- s = *dmin1 * .5;
- }
- *ttype = -9;
- }
- } else if (*n0in == *n0 + 2) {
- /* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */
- /* Cases 10 and 11. */
- if (*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7]) {
- *ttype = -10;
- s = *dmin2 * .333;
- if (z__[nn - 5] > z__[nn - 7]) {
- return 0;
- }
- b1 = z__[nn - 5] / z__[nn - 7];
- b2 = b1;
- if (b2 == 0.) {
- goto L80;
- }
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
- if (z__[i4] > z__[i4 - 2]) {
- return 0;
- }
- b1 *= z__[i4] / z__[i4 - 2];
- b2 += b1;
- if (b1 * 100. < b2) {
- goto L80;
- }
- /* L70: */
- }
- L80:
- b2 = sqrt(b2 * 1.05);
- /* Computing 2nd power */
- d__1 = b2;
- a2 = *dmin2 / (d__1 * d__1 + 1.);
- gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
- nn - 9]) - a2;
- if (gap2 > 0. && gap2 > b2 * a2) {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
- s = max(d__1,d__2);
- } else {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
- s = max(d__1,d__2);
- }
- } else {
- s = *dmin2 * .25;
- *ttype = -11;
- }
- } else if (*n0in > *n0 + 2) {
- /* Case 12, more than two eigenvalues deflated. No information. */
- s = 0.;
- *ttype = -12;
- }
- *tau = s;
- return 0;
- /* End of DLASQ4 */
- } /* dlasq4_ */
|