dlasq4.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /* dlasq4.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Subroutine */ int dlasq4_(integer *i0, integer *n0, doublereal *z__,
  14. integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1,
  15. doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2,
  16. doublereal *tau, integer *ttype, doublereal *g)
  17. {
  18. /* System generated locals */
  19. integer i__1;
  20. doublereal d__1, d__2;
  21. /* Builtin functions */
  22. double sqrt(doublereal);
  23. /* Local variables */
  24. doublereal s, a2, b1, b2;
  25. integer i4, nn, np;
  26. doublereal gam, gap1, gap2;
  27. /* -- LAPACK routine (version 3.2) -- */
  28. /* -- Contributed by Osni Marques of the Lawrence Berkeley National -- */
  29. /* -- Laboratory and Beresford Parlett of the Univ. of California at -- */
  30. /* -- Berkeley -- */
  31. /* -- November 2008 -- */
  32. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  33. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  34. /* .. Scalar Arguments .. */
  35. /* .. */
  36. /* .. Array Arguments .. */
  37. /* .. */
  38. /* Purpose */
  39. /* ======= */
  40. /* DLASQ4 computes an approximation TAU to the smallest eigenvalue */
  41. /* using values of d from the previous transform. */
  42. /* I0 (input) INTEGER */
  43. /* First index. */
  44. /* N0 (input) INTEGER */
  45. /* Last index. */
  46. /* Z (input) DOUBLE PRECISION array, dimension ( 4*N ) */
  47. /* Z holds the qd array. */
  48. /* PP (input) INTEGER */
  49. /* PP=0 for ping, PP=1 for pong. */
  50. /* NOIN (input) INTEGER */
  51. /* The value of N0 at start of EIGTEST. */
  52. /* DMIN (input) DOUBLE PRECISION */
  53. /* Minimum value of d. */
  54. /* DMIN1 (input) DOUBLE PRECISION */
  55. /* Minimum value of d, excluding D( N0 ). */
  56. /* DMIN2 (input) DOUBLE PRECISION */
  57. /* Minimum value of d, excluding D( N0 ) and D( N0-1 ). */
  58. /* DN (input) DOUBLE PRECISION */
  59. /* d(N) */
  60. /* DN1 (input) DOUBLE PRECISION */
  61. /* d(N-1) */
  62. /* DN2 (input) DOUBLE PRECISION */
  63. /* d(N-2) */
  64. /* TAU (output) DOUBLE PRECISION */
  65. /* This is the shift. */
  66. /* TTYPE (output) INTEGER */
  67. /* Shift type. */
  68. /* G (input/output) REAL */
  69. /* G is passed as an argument in order to save its value between */
  70. /* calls to DLASQ4. */
  71. /* Further Details */
  72. /* =============== */
  73. /* CNST1 = 9/16 */
  74. /* ===================================================================== */
  75. /* .. Parameters .. */
  76. /* .. */
  77. /* .. Local Scalars .. */
  78. /* .. */
  79. /* .. Intrinsic Functions .. */
  80. /* .. */
  81. /* .. Executable Statements .. */
  82. /* A negative DMIN forces the shift to take that absolute value */
  83. /* TTYPE records the type of shift. */
  84. /* Parameter adjustments */
  85. --z__;
  86. /* Function Body */
  87. if (*dmin__ <= 0.) {
  88. *tau = -(*dmin__);
  89. *ttype = -1;
  90. return 0;
  91. }
  92. nn = (*n0 << 2) + *pp;
  93. if (*n0in == *n0) {
  94. /* No eigenvalues deflated. */
  95. if (*dmin__ == *dn || *dmin__ == *dn1) {
  96. b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
  97. b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
  98. a2 = z__[nn - 7] + z__[nn - 5];
  99. /* Cases 2 and 3. */
  100. if (*dmin__ == *dn && *dmin1 == *dn1) {
  101. gap2 = *dmin2 - a2 - *dmin2 * .25;
  102. if (gap2 > 0. && gap2 > b2) {
  103. gap1 = a2 - *dn - b2 / gap2 * b2;
  104. } else {
  105. gap1 = a2 - *dn - (b1 + b2);
  106. }
  107. if (gap1 > 0. && gap1 > b1) {
  108. /* Computing MAX */
  109. d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;
  110. s = max(d__1,d__2);
  111. *ttype = -2;
  112. } else {
  113. s = 0.;
  114. if (*dn > b1) {
  115. s = *dn - b1;
  116. }
  117. if (a2 > b1 + b2) {
  118. /* Computing MIN */
  119. d__1 = s, d__2 = a2 - (b1 + b2);
  120. s = min(d__1,d__2);
  121. }
  122. /* Computing MAX */
  123. d__1 = s, d__2 = *dmin__ * .333;
  124. s = max(d__1,d__2);
  125. *ttype = -3;
  126. }
  127. } else {
  128. /* Case 4. */
  129. *ttype = -4;
  130. s = *dmin__ * .25;
  131. if (*dmin__ == *dn) {
  132. gam = *dn;
  133. a2 = 0.;
  134. if (z__[nn - 5] > z__[nn - 7]) {
  135. return 0;
  136. }
  137. b2 = z__[nn - 5] / z__[nn - 7];
  138. np = nn - 9;
  139. } else {
  140. np = nn - (*pp << 1);
  141. b2 = z__[np - 2];
  142. gam = *dn1;
  143. if (z__[np - 4] > z__[np - 2]) {
  144. return 0;
  145. }
  146. a2 = z__[np - 4] / z__[np - 2];
  147. if (z__[nn - 9] > z__[nn - 11]) {
  148. return 0;
  149. }
  150. b2 = z__[nn - 9] / z__[nn - 11];
  151. np = nn - 13;
  152. }
  153. /* Approximate contribution to norm squared from I < NN-1. */
  154. a2 += b2;
  155. i__1 = (*i0 << 2) - 1 + *pp;
  156. for (i4 = np; i4 >= i__1; i4 += -4) {
  157. if (b2 == 0.) {
  158. goto L20;
  159. }
  160. b1 = b2;
  161. if (z__[i4] > z__[i4 - 2]) {
  162. return 0;
  163. }
  164. b2 *= z__[i4] / z__[i4 - 2];
  165. a2 += b2;
  166. if (max(b2,b1) * 100. < a2 || .563 < a2) {
  167. goto L20;
  168. }
  169. /* L10: */
  170. }
  171. L20:
  172. a2 *= 1.05;
  173. /* Rayleigh quotient residual bound. */
  174. if (a2 < .563) {
  175. s = gam * (1. - sqrt(a2)) / (a2 + 1.);
  176. }
  177. }
  178. } else if (*dmin__ == *dn2) {
  179. /* Case 5. */
  180. *ttype = -5;
  181. s = *dmin__ * .25;
  182. /* Compute contribution to norm squared from I > NN-2. */
  183. np = nn - (*pp << 1);
  184. b1 = z__[np - 2];
  185. b2 = z__[np - 6];
  186. gam = *dn2;
  187. if (z__[np - 8] > b2 || z__[np - 4] > b1) {
  188. return 0;
  189. }
  190. a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);
  191. /* Approximate contribution to norm squared from I < NN-2. */
  192. if (*n0 - *i0 > 2) {
  193. b2 = z__[nn - 13] / z__[nn - 15];
  194. a2 += b2;
  195. i__1 = (*i0 << 2) - 1 + *pp;
  196. for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
  197. if (b2 == 0.) {
  198. goto L40;
  199. }
  200. b1 = b2;
  201. if (z__[i4] > z__[i4 - 2]) {
  202. return 0;
  203. }
  204. b2 *= z__[i4] / z__[i4 - 2];
  205. a2 += b2;
  206. if (max(b2,b1) * 100. < a2 || .563 < a2) {
  207. goto L40;
  208. }
  209. /* L30: */
  210. }
  211. L40:
  212. a2 *= 1.05;
  213. }
  214. if (a2 < .563) {
  215. s = gam * (1. - sqrt(a2)) / (a2 + 1.);
  216. }
  217. } else {
  218. /* Case 6, no information to guide us. */
  219. if (*ttype == -6) {
  220. *g += (1. - *g) * .333;
  221. } else if (*ttype == -18) {
  222. *g = .083250000000000005;
  223. } else {
  224. *g = .25;
  225. }
  226. s = *g * *dmin__;
  227. *ttype = -6;
  228. }
  229. } else if (*n0in == *n0 + 1) {
  230. /* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
  231. if (*dmin1 == *dn1 && *dmin2 == *dn2) {
  232. /* Cases 7 and 8. */
  233. *ttype = -7;
  234. s = *dmin1 * .333;
  235. if (z__[nn - 5] > z__[nn - 7]) {
  236. return 0;
  237. }
  238. b1 = z__[nn - 5] / z__[nn - 7];
  239. b2 = b1;
  240. if (b2 == 0.) {
  241. goto L60;
  242. }
  243. i__1 = (*i0 << 2) - 1 + *pp;
  244. for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
  245. a2 = b1;
  246. if (z__[i4] > z__[i4 - 2]) {
  247. return 0;
  248. }
  249. b1 *= z__[i4] / z__[i4 - 2];
  250. b2 += b1;
  251. if (max(b1,a2) * 100. < b2) {
  252. goto L60;
  253. }
  254. /* L50: */
  255. }
  256. L60:
  257. b2 = sqrt(b2 * 1.05);
  258. /* Computing 2nd power */
  259. d__1 = b2;
  260. a2 = *dmin1 / (d__1 * d__1 + 1.);
  261. gap2 = *dmin2 * .5 - a2;
  262. if (gap2 > 0. && gap2 > b2 * a2) {
  263. /* Computing MAX */
  264. d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
  265. s = max(d__1,d__2);
  266. } else {
  267. /* Computing MAX */
  268. d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
  269. s = max(d__1,d__2);
  270. *ttype = -8;
  271. }
  272. } else {
  273. /* Case 9. */
  274. s = *dmin1 * .25;
  275. if (*dmin1 == *dn1) {
  276. s = *dmin1 * .5;
  277. }
  278. *ttype = -9;
  279. }
  280. } else if (*n0in == *n0 + 2) {
  281. /* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */
  282. /* Cases 10 and 11. */
  283. if (*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7]) {
  284. *ttype = -10;
  285. s = *dmin2 * .333;
  286. if (z__[nn - 5] > z__[nn - 7]) {
  287. return 0;
  288. }
  289. b1 = z__[nn - 5] / z__[nn - 7];
  290. b2 = b1;
  291. if (b2 == 0.) {
  292. goto L80;
  293. }
  294. i__1 = (*i0 << 2) - 1 + *pp;
  295. for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
  296. if (z__[i4] > z__[i4 - 2]) {
  297. return 0;
  298. }
  299. b1 *= z__[i4] / z__[i4 - 2];
  300. b2 += b1;
  301. if (b1 * 100. < b2) {
  302. goto L80;
  303. }
  304. /* L70: */
  305. }
  306. L80:
  307. b2 = sqrt(b2 * 1.05);
  308. /* Computing 2nd power */
  309. d__1 = b2;
  310. a2 = *dmin2 / (d__1 * d__1 + 1.);
  311. gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
  312. nn - 9]) - a2;
  313. if (gap2 > 0. && gap2 > b2 * a2) {
  314. /* Computing MAX */
  315. d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
  316. s = max(d__1,d__2);
  317. } else {
  318. /* Computing MAX */
  319. d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
  320. s = max(d__1,d__2);
  321. }
  322. } else {
  323. s = *dmin2 * .25;
  324. *ttype = -11;
  325. }
  326. } else if (*n0in > *n0 + 2) {
  327. /* Case 12, more than two eigenvalues deflated. No information. */
  328. s = 0.;
  329. *ttype = -12;
  330. }
  331. *tau = s;
  332. return 0;
  333. /* End of DLASQ4 */
  334. } /* dlasq4_ */