12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499 |
- /* dhgeqz.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b12 = 0.;
- static doublereal c_b13 = 1.;
- static integer c__1 = 1;
- static integer c__3 = 3;
- /* Subroutine */ int dhgeqz_(char *job, char *compq, char *compz, integer *n,
- integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
- *t, integer *ldt, doublereal *alphar, doublereal *alphai, doublereal *
- beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz,
- doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1,
- z_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2, d__3, d__4;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- doublereal c__;
- integer j;
- doublereal s, v[3], s1, s2, t1, u1, u2, a11, a12, a21, a22, b11, b22, c12,
- c21;
- integer jc;
- doublereal an, bn, cl, cq, cr;
- integer in;
- doublereal u12, w11, w12, w21;
- integer jr;
- doublereal cz, w22, sl, wi, sr, vs, wr, b1a, b2a, a1i, a2i, b1i, b2i, a1r,
- a2r, b1r, b2r, wr2, ad11, ad12, ad21, ad22, c11i, c22i;
- integer jch;
- doublereal c11r, c22r;
- logical ilq;
- doublereal u12l, tau, sqi;
- logical ilz;
- doublereal ulp, sqr, szi, szr, ad11l, ad12l, ad21l, ad22l, ad32l, wabs,
- atol, btol, temp;
- extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *), dlag2_(
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- doublereal temp2, s1inv, scale;
- extern logical lsame_(char *, char *);
- integer iiter, ilast, jiter;
- doublereal anorm, bnorm;
- integer maxit;
- doublereal tempi, tempr;
- extern doublereal dlapy2_(doublereal *, doublereal *), dlapy3_(doublereal
- *, doublereal *, doublereal *);
- extern /* Subroutine */ int dlasv2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- logical ilazr2;
- doublereal ascale, bscale;
- extern doublereal dlamch_(char *);
- extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
- integer *, doublereal *);
- extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
- doublereal *);
- extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- doublereal safmax;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- doublereal eshift;
- logical ilschr;
- integer icompq, ilastm, ischur;
- logical ilazro;
- integer icompz, ifirst, ifrstm, istart;
- logical ilpivt, lquery;
- /* -- LAPACK routine (version 3.2.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* -- April 2009 -- */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DHGEQZ computes the eigenvalues of a real matrix pair (H,T), */
- /* where H is an upper Hessenberg matrix and T is upper triangular, */
- /* using the double-shift QZ method. */
- /* Matrix pairs of this type are produced by the reduction to */
- /* generalized upper Hessenberg form of a real matrix pair (A,B): */
- /* A = Q1*H*Z1**T, B = Q1*T*Z1**T, */
- /* as computed by DGGHRD. */
- /* If JOB='S', then the Hessenberg-triangular pair (H,T) is */
- /* also reduced to generalized Schur form, */
- /* H = Q*S*Z**T, T = Q*P*Z**T, */
- /* where Q and Z are orthogonal matrices, P is an upper triangular */
- /* matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 */
- /* diagonal blocks. */
- /* The 1-by-1 blocks correspond to real eigenvalues of the matrix pair */
- /* (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of */
- /* eigenvalues. */
- /* Additionally, the 2-by-2 upper triangular diagonal blocks of P */
- /* corresponding to 2-by-2 blocks of S are reduced to positive diagonal */
- /* form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, */
- /* P(j,j) > 0, and P(j+1,j+1) > 0. */
- /* Optionally, the orthogonal matrix Q from the generalized Schur */
- /* factorization may be postmultiplied into an input matrix Q1, and the */
- /* orthogonal matrix Z may be postmultiplied into an input matrix Z1. */
- /* If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced */
- /* the matrix pair (A,B) to generalized upper Hessenberg form, then the */
- /* output matrices Q1*Q and Z1*Z are the orthogonal factors from the */
- /* generalized Schur factorization of (A,B): */
- /* A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T. */
- /* To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, */
- /* of (A,B)) are computed as a pair of values (alpha,beta), where alpha is */
- /* complex and beta real. */
- /* If beta is nonzero, lambda = alpha / beta is an eigenvalue of the */
- /* generalized nonsymmetric eigenvalue problem (GNEP) */
- /* A*x = lambda*B*x */
- /* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
- /* alternate form of the GNEP */
- /* mu*A*y = B*y. */
- /* Real eigenvalues can be read directly from the generalized Schur */
- /* form: */
- /* alpha = S(i,i), beta = P(i,i). */
- /* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
- /* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
- /* pp. 241--256. */
- /* Arguments */
- /* ========= */
- /* JOB (input) CHARACTER*1 */
- /* = 'E': Compute eigenvalues only; */
- /* = 'S': Compute eigenvalues and the Schur form. */
- /* COMPQ (input) CHARACTER*1 */
- /* = 'N': Left Schur vectors (Q) are not computed; */
- /* = 'I': Q is initialized to the unit matrix and the matrix Q */
- /* of left Schur vectors of (H,T) is returned; */
- /* = 'V': Q must contain an orthogonal matrix Q1 on entry and */
- /* the product Q1*Q is returned. */
- /* COMPZ (input) CHARACTER*1 */
- /* = 'N': Right Schur vectors (Z) are not computed; */
- /* = 'I': Z is initialized to the unit matrix and the matrix Z */
- /* of right Schur vectors of (H,T) is returned; */
- /* = 'V': Z must contain an orthogonal matrix Z1 on entry and */
- /* the product Z1*Z is returned. */
- /* N (input) INTEGER */
- /* The order of the matrices H, T, Q, and Z. N >= 0. */
- /* ILO (input) INTEGER */
- /* IHI (input) INTEGER */
- /* ILO and IHI mark the rows and columns of H which are in */
- /* Hessenberg form. It is assumed that A is already upper */
- /* triangular in rows and columns 1:ILO-1 and IHI+1:N. */
- /* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
- /* H (input/output) DOUBLE PRECISION array, dimension (LDH, N) */
- /* On entry, the N-by-N upper Hessenberg matrix H. */
- /* On exit, if JOB = 'S', H contains the upper quasi-triangular */
- /* matrix S from the generalized Schur factorization; */
- /* 2-by-2 diagonal blocks (corresponding to complex conjugate */
- /* pairs of eigenvalues) are returned in standard form, with */
- /* H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. */
- /* If JOB = 'E', the diagonal blocks of H match those of S, but */
- /* the rest of H is unspecified. */
- /* LDH (input) INTEGER */
- /* The leading dimension of the array H. LDH >= max( 1, N ). */
- /* T (input/output) DOUBLE PRECISION array, dimension (LDT, N) */
- /* On entry, the N-by-N upper triangular matrix T. */
- /* On exit, if JOB = 'S', T contains the upper triangular */
- /* matrix P from the generalized Schur factorization; */
- /* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S */
- /* are reduced to positive diagonal form, i.e., if H(j+1,j) is */
- /* non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and */
- /* T(j+1,j+1) > 0. */
- /* If JOB = 'E', the diagonal blocks of T match those of P, but */
- /* the rest of T is unspecified. */
- /* LDT (input) INTEGER */
- /* The leading dimension of the array T. LDT >= max( 1, N ). */
- /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
- /* The real parts of each scalar alpha defining an eigenvalue */
- /* of GNEP. */
- /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
- /* The imaginary parts of each scalar alpha defining an */
- /* eigenvalue of GNEP. */
- /* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
- /* positive, then the j-th and (j+1)-st eigenvalues are a */
- /* complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* The scalars beta that define the eigenvalues of GNEP. */
- /* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
- /* beta = BETA(j) represent the j-th eigenvalue of the matrix */
- /* pair (A,B), in one of the forms lambda = alpha/beta or */
- /* mu = beta/alpha. Since either lambda or mu may overflow, */
- /* they should not, in general, be computed. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
- /* On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in */
- /* the reduction of (A,B) to generalized Hessenberg form. */
- /* On exit, if COMPZ = 'I', the orthogonal matrix of left Schur */
- /* vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix */
- /* of left Schur vectors of (A,B). */
- /* Not referenced if COMPZ = 'N'. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= 1. */
- /* If COMPQ='V' or 'I', then LDQ >= N. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
- /* On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in */
- /* the reduction of (A,B) to generalized Hessenberg form. */
- /* On exit, if COMPZ = 'I', the orthogonal matrix of */
- /* right Schur vectors of (H,T), and if COMPZ = 'V', the */
- /* orthogonal matrix of right Schur vectors of (A,B). */
- /* Not referenced if COMPZ = 'N'. */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. LDZ >= 1. */
- /* If COMPZ='V' or 'I', then LDZ >= N. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,N). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* = 1,...,N: the QZ iteration did not converge. (H,T) is not */
- /* in Schur form, but ALPHAR(i), ALPHAI(i), and */
- /* BETA(i), i=INFO+1,...,N should be correct. */
- /* = N+1,...,2*N: the shift calculation failed. (H,T) is not */
- /* in Schur form, but ALPHAR(i), ALPHAI(i), and */
- /* BETA(i), i=INFO-N+1,...,N should be correct. */
- /* Further Details */
- /* =============== */
- /* Iteration counters: */
- /* JITER -- counts iterations. */
- /* IITER -- counts iterations run since ILAST was last */
- /* changed. This is therefore reset only when a 1-by-1 or */
- /* 2-by-2 block deflates off the bottom. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* $ SAFETY = 1.0E+0 ) */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode JOB, COMPQ, COMPZ */
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1;
- h__ -= h_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1;
- t -= t_offset;
- --alphar;
- --alphai;
- --beta;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- /* Function Body */
- if (lsame_(job, "E")) {
- ilschr = FALSE_;
- ischur = 1;
- } else if (lsame_(job, "S")) {
- ilschr = TRUE_;
- ischur = 2;
- } else {
- ischur = 0;
- }
- if (lsame_(compq, "N")) {
- ilq = FALSE_;
- icompq = 1;
- } else if (lsame_(compq, "V")) {
- ilq = TRUE_;
- icompq = 2;
- } else if (lsame_(compq, "I")) {
- ilq = TRUE_;
- icompq = 3;
- } else {
- icompq = 0;
- }
- if (lsame_(compz, "N")) {
- ilz = FALSE_;
- icompz = 1;
- } else if (lsame_(compz, "V")) {
- ilz = TRUE_;
- icompz = 2;
- } else if (lsame_(compz, "I")) {
- ilz = TRUE_;
- icompz = 3;
- } else {
- icompz = 0;
- }
- /* Check Argument Values */
- *info = 0;
- work[1] = (doublereal) max(1,*n);
- lquery = *lwork == -1;
- if (ischur == 0) {
- *info = -1;
- } else if (icompq == 0) {
- *info = -2;
- } else if (icompz == 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ilo < 1) {
- *info = -5;
- } else if (*ihi > *n || *ihi < *ilo - 1) {
- *info = -6;
- } else if (*ldh < *n) {
- *info = -8;
- } else if (*ldt < *n) {
- *info = -10;
- } else if (*ldq < 1 || ilq && *ldq < *n) {
- *info = -15;
- } else if (*ldz < 1 || ilz && *ldz < *n) {
- *info = -17;
- } else if (*lwork < max(1,*n) && ! lquery) {
- *info = -19;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DHGEQZ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n <= 0) {
- work[1] = 1.;
- return 0;
- }
- /* Initialize Q and Z */
- if (icompq == 3) {
- dlaset_("Full", n, n, &c_b12, &c_b13, &q[q_offset], ldq);
- }
- if (icompz == 3) {
- dlaset_("Full", n, n, &c_b12, &c_b13, &z__[z_offset], ldz);
- }
- /* Machine Constants */
- in = *ihi + 1 - *ilo;
- safmin = dlamch_("S");
- safmax = 1. / safmin;
- ulp = dlamch_("E") * dlamch_("B");
- anorm = dlanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &work[1]);
- bnorm = dlanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &work[1]);
- /* Computing MAX */
- d__1 = safmin, d__2 = ulp * anorm;
- atol = max(d__1,d__2);
- /* Computing MAX */
- d__1 = safmin, d__2 = ulp * bnorm;
- btol = max(d__1,d__2);
- ascale = 1. / max(safmin,anorm);
- bscale = 1. / max(safmin,bnorm);
- /* Set Eigenvalues IHI+1:N */
- i__1 = *n;
- for (j = *ihi + 1; j <= i__1; ++j) {
- if (t[j + j * t_dim1] < 0.) {
- if (ilschr) {
- i__2 = j;
- for (jr = 1; jr <= i__2; ++jr) {
- h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
- t[jr + j * t_dim1] = -t[jr + j * t_dim1];
- /* L10: */
- }
- } else {
- h__[j + j * h_dim1] = -h__[j + j * h_dim1];
- t[j + j * t_dim1] = -t[j + j * t_dim1];
- }
- if (ilz) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
- /* L20: */
- }
- }
- }
- alphar[j] = h__[j + j * h_dim1];
- alphai[j] = 0.;
- beta[j] = t[j + j * t_dim1];
- /* L30: */
- }
- /* If IHI < ILO, skip QZ steps */
- if (*ihi < *ilo) {
- goto L380;
- }
- /* MAIN QZ ITERATION LOOP */
- /* Initialize dynamic indices */
- /* Eigenvalues ILAST+1:N have been found. */
- /* Column operations modify rows IFRSTM:whatever. */
- /* Row operations modify columns whatever:ILASTM. */
- /* If only eigenvalues are being computed, then */
- /* IFRSTM is the row of the last splitting row above row ILAST; */
- /* this is always at least ILO. */
- /* IITER counts iterations since the last eigenvalue was found, */
- /* to tell when to use an extraordinary shift. */
- /* MAXIT is the maximum number of QZ sweeps allowed. */
- ilast = *ihi;
- if (ilschr) {
- ifrstm = 1;
- ilastm = *n;
- } else {
- ifrstm = *ilo;
- ilastm = *ihi;
- }
- iiter = 0;
- eshift = 0.;
- maxit = (*ihi - *ilo + 1) * 30;
- i__1 = maxit;
- for (jiter = 1; jiter <= i__1; ++jiter) {
- /* Split the matrix if possible. */
- /* Two tests: */
- /* 1: H(j,j-1)=0 or j=ILO */
- /* 2: T(j,j)=0 */
- if (ilast == *ilo) {
- /* Special case: j=ILAST */
- goto L80;
- } else {
- if ((d__1 = h__[ilast + (ilast - 1) * h_dim1], abs(d__1)) <= atol)
- {
- h__[ilast + (ilast - 1) * h_dim1] = 0.;
- goto L80;
- }
- }
- if ((d__1 = t[ilast + ilast * t_dim1], abs(d__1)) <= btol) {
- t[ilast + ilast * t_dim1] = 0.;
- goto L70;
- }
- /* General case: j<ILAST */
- i__2 = *ilo;
- for (j = ilast - 1; j >= i__2; --j) {
- /* Test 1: for H(j,j-1)=0 or j=ILO */
- if (j == *ilo) {
- ilazro = TRUE_;
- } else {
- if ((d__1 = h__[j + (j - 1) * h_dim1], abs(d__1)) <= atol) {
- h__[j + (j - 1) * h_dim1] = 0.;
- ilazro = TRUE_;
- } else {
- ilazro = FALSE_;
- }
- }
- /* Test 2: for T(j,j)=0 */
- if ((d__1 = t[j + j * t_dim1], abs(d__1)) < btol) {
- t[j + j * t_dim1] = 0.;
- /* Test 1a: Check for 2 consecutive small subdiagonals in A */
- ilazr2 = FALSE_;
- if (! ilazro) {
- temp = (d__1 = h__[j + (j - 1) * h_dim1], abs(d__1));
- temp2 = (d__1 = h__[j + j * h_dim1], abs(d__1));
- tempr = max(temp,temp2);
- if (tempr < 1. && tempr != 0.) {
- temp /= tempr;
- temp2 /= tempr;
- }
- if (temp * (ascale * (d__1 = h__[j + 1 + j * h_dim1], abs(
- d__1))) <= temp2 * (ascale * atol)) {
- ilazr2 = TRUE_;
- }
- }
- /* If both tests pass (1 & 2), i.e., the leading diagonal */
- /* element of B in the block is zero, split a 1x1 block off */
- /* at the top. (I.e., at the J-th row/column) The leading */
- /* diagonal element of the remainder can also be zero, so */
- /* this may have to be done repeatedly. */
- if (ilazro || ilazr2) {
- i__3 = ilast - 1;
- for (jch = j; jch <= i__3; ++jch) {
- temp = h__[jch + jch * h_dim1];
- dlartg_(&temp, &h__[jch + 1 + jch * h_dim1], &c__, &s,
- &h__[jch + jch * h_dim1]);
- h__[jch + 1 + jch * h_dim1] = 0.;
- i__4 = ilastm - jch;
- drot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
- h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__,
- &s);
- i__4 = ilastm - jch;
- drot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
- jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
- if (ilq) {
- drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
- * q_dim1 + 1], &c__1, &c__, &s);
- }
- if (ilazr2) {
- h__[jch + (jch - 1) * h_dim1] *= c__;
- }
- ilazr2 = FALSE_;
- if ((d__1 = t[jch + 1 + (jch + 1) * t_dim1], abs(d__1)
- ) >= btol) {
- if (jch + 1 >= ilast) {
- goto L80;
- } else {
- ifirst = jch + 1;
- goto L110;
- }
- }
- t[jch + 1 + (jch + 1) * t_dim1] = 0.;
- /* L40: */
- }
- goto L70;
- } else {
- /* Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
- /* Then process as in the case T(ILAST,ILAST)=0 */
- i__3 = ilast - 1;
- for (jch = j; jch <= i__3; ++jch) {
- temp = t[jch + (jch + 1) * t_dim1];
- dlartg_(&temp, &t[jch + 1 + (jch + 1) * t_dim1], &c__,
- &s, &t[jch + (jch + 1) * t_dim1]);
- t[jch + 1 + (jch + 1) * t_dim1] = 0.;
- if (jch < ilastm - 1) {
- i__4 = ilastm - jch - 1;
- drot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
- t[jch + 1 + (jch + 2) * t_dim1], ldt, &
- c__, &s);
- }
- i__4 = ilastm - jch + 2;
- drot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
- h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__,
- &s);
- if (ilq) {
- drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
- * q_dim1 + 1], &c__1, &c__, &s);
- }
- temp = h__[jch + 1 + jch * h_dim1];
- dlartg_(&temp, &h__[jch + 1 + (jch - 1) * h_dim1], &
- c__, &s, &h__[jch + 1 + jch * h_dim1]);
- h__[jch + 1 + (jch - 1) * h_dim1] = 0.;
- i__4 = jch + 1 - ifrstm;
- drot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
- ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
- ;
- i__4 = jch - ifrstm;
- drot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
- ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
- ;
- if (ilz) {
- drot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch
- - 1) * z_dim1 + 1], &c__1, &c__, &s);
- }
- /* L50: */
- }
- goto L70;
- }
- } else if (ilazro) {
- /* Only test 1 passed -- work on J:ILAST */
- ifirst = j;
- goto L110;
- }
- /* Neither test passed -- try next J */
- /* L60: */
- }
- /* (Drop-through is "impossible") */
- *info = *n + 1;
- goto L420;
- /* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
- /* 1x1 block. */
- L70:
- temp = h__[ilast + ilast * h_dim1];
- dlartg_(&temp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
- ilast + ilast * h_dim1]);
- h__[ilast + (ilast - 1) * h_dim1] = 0.;
- i__2 = ilast - ifrstm;
- drot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
- ilast - 1) * h_dim1], &c__1, &c__, &s);
- i__2 = ilast - ifrstm;
- drot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast -
- 1) * t_dim1], &c__1, &c__, &s);
- if (ilz) {
- drot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) *
- z_dim1 + 1], &c__1, &c__, &s);
- }
- /* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, */
- /* and BETA */
- L80:
- if (t[ilast + ilast * t_dim1] < 0.) {
- if (ilschr) {
- i__2 = ilast;
- for (j = ifrstm; j <= i__2; ++j) {
- h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
- t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
- /* L90: */
- }
- } else {
- h__[ilast + ilast * h_dim1] = -h__[ilast + ilast * h_dim1];
- t[ilast + ilast * t_dim1] = -t[ilast + ilast * t_dim1];
- }
- if (ilz) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
- /* L100: */
- }
- }
- }
- alphar[ilast] = h__[ilast + ilast * h_dim1];
- alphai[ilast] = 0.;
- beta[ilast] = t[ilast + ilast * t_dim1];
- /* Go to next block -- exit if finished. */
- --ilast;
- if (ilast < *ilo) {
- goto L380;
- }
- /* Reset counters */
- iiter = 0;
- eshift = 0.;
- if (! ilschr) {
- ilastm = ilast;
- if (ifrstm > ilast) {
- ifrstm = *ilo;
- }
- }
- goto L350;
- /* QZ step */
- /* This iteration only involves rows/columns IFIRST:ILAST. We */
- /* assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
- L110:
- ++iiter;
- if (! ilschr) {
- ifrstm = ifirst;
- }
- /* Compute single shifts. */
- /* At this point, IFIRST < ILAST, and the diagonal elements of */
- /* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
- /* magnitude) */
- if (iiter / 10 * 10 == iiter) {
- /* Exceptional shift. Chosen for no particularly good reason. */
- /* (Single shift only.) */
- if ((doublereal) maxit * safmin * (d__1 = h__[ilast - 1 + ilast *
- h_dim1], abs(d__1)) < (d__2 = t[ilast - 1 + (ilast - 1) *
- t_dim1], abs(d__2))) {
- eshift += h__[ilast - 1 + ilast * h_dim1] / t[ilast - 1 + (
- ilast - 1) * t_dim1];
- } else {
- eshift += 1. / (safmin * (doublereal) maxit);
- }
- s1 = 1.;
- wr = eshift;
- } else {
- /* Shifts based on the generalized eigenvalues of the */
- /* bottom-right 2x2 block of A and B. The first eigenvalue */
- /* returned by DLAG2 is the Wilkinson shift (AEP p.512), */
- d__1 = safmin * 100.;
- dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1
- + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &s2, &wr, &wr2,
- &wi);
- /* Computing MAX */
- /* Computing MAX */
- d__3 = 1., d__4 = abs(wr), d__3 = max(d__3,d__4), d__4 = abs(wi);
- d__1 = s1, d__2 = safmin * max(d__3,d__4);
- temp = max(d__1,d__2);
- if (wi != 0.) {
- goto L200;
- }
- }
- /* Fiddle with shift to avoid overflow */
- temp = min(ascale,1.) * (safmax * .5);
- if (s1 > temp) {
- scale = temp / s1;
- } else {
- scale = 1.;
- }
- temp = min(bscale,1.) * (safmax * .5);
- if (abs(wr) > temp) {
- /* Computing MIN */
- d__1 = scale, d__2 = temp / abs(wr);
- scale = min(d__1,d__2);
- }
- s1 = scale * s1;
- wr = scale * wr;
- /* Now check for two consecutive small subdiagonals. */
- i__2 = ifirst + 1;
- for (j = ilast - 1; j >= i__2; --j) {
- istart = j;
- temp = (d__1 = s1 * h__[j + (j - 1) * h_dim1], abs(d__1));
- temp2 = (d__1 = s1 * h__[j + j * h_dim1] - wr * t[j + j * t_dim1],
- abs(d__1));
- tempr = max(temp,temp2);
- if (tempr < 1. && tempr != 0.) {
- temp /= tempr;
- temp2 /= tempr;
- }
- if ((d__1 = ascale * h__[j + 1 + j * h_dim1] * temp, abs(d__1)) <=
- ascale * atol * temp2) {
- goto L130;
- }
- /* L120: */
- }
- istart = ifirst;
- L130:
- /* Do an implicit single-shift QZ sweep. */
- /* Initial Q */
- temp = s1 * h__[istart + istart * h_dim1] - wr * t[istart + istart *
- t_dim1];
- temp2 = s1 * h__[istart + 1 + istart * h_dim1];
- dlartg_(&temp, &temp2, &c__, &s, &tempr);
- /* Sweep */
- i__2 = ilast - 1;
- for (j = istart; j <= i__2; ++j) {
- if (j > istart) {
- temp = h__[j + (j - 1) * h_dim1];
- dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[
- j + (j - 1) * h_dim1]);
- h__[j + 1 + (j - 1) * h_dim1] = 0.;
- }
- i__3 = ilastm;
- for (jc = j; jc <= i__3; ++jc) {
- temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc *
- h_dim1];
- h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ *
- h__[j + 1 + jc * h_dim1];
- h__[j + jc * h_dim1] = temp;
- temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
- t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j
- + 1 + jc * t_dim1];
- t[j + jc * t_dim1] = temp2;
- /* L140: */
- }
- if (ilq) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) *
- q_dim1];
- q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
- q[jr + (j + 1) * q_dim1];
- q[jr + j * q_dim1] = temp;
- /* L150: */
- }
- }
- temp = t[j + 1 + (j + 1) * t_dim1];
- dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
- 1) * t_dim1]);
- t[j + 1 + j * t_dim1] = 0.;
- /* Computing MIN */
- i__4 = j + 2;
- i__3 = min(i__4,ilast);
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j *
- h_dim1];
- h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
- h__[jr + j * h_dim1];
- h__[jr + (j + 1) * h_dim1] = temp;
- /* L160: */
- }
- i__3 = j;
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
- ;
- t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
- jr + j * t_dim1];
- t[jr + (j + 1) * t_dim1] = temp;
- /* L170: */
- }
- if (ilz) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
- z_dim1];
- z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] +
- c__ * z__[jr + j * z_dim1];
- z__[jr + (j + 1) * z_dim1] = temp;
- /* L180: */
- }
- }
- /* L190: */
- }
- goto L350;
- /* Use Francis double-shift */
- /* Note: the Francis double-shift should work with real shifts, */
- /* but only if the block is at least 3x3. */
- /* This code may break if this point is reached with */
- /* a 2x2 block with real eigenvalues. */
- L200:
- if (ifirst + 1 == ilast) {
- /* Special case -- 2x2 block with complex eigenvectors */
- /* Step 1: Standardize, that is, rotate so that */
- /* ( B11 0 ) */
- /* B = ( ) with B11 non-negative. */
- /* ( 0 B22 ) */
- dlasv2_(&t[ilast - 1 + (ilast - 1) * t_dim1], &t[ilast - 1 +
- ilast * t_dim1], &t[ilast + ilast * t_dim1], &b22, &b11, &
- sr, &cr, &sl, &cl);
- if (b11 < 0.) {
- cr = -cr;
- sr = -sr;
- b11 = -b11;
- b22 = -b22;
- }
- i__2 = ilastm + 1 - ifirst;
- drot_(&i__2, &h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &h__[
- ilast + (ilast - 1) * h_dim1], ldh, &cl, &sl);
- i__2 = ilast + 1 - ifrstm;
- drot_(&i__2, &h__[ifrstm + (ilast - 1) * h_dim1], &c__1, &h__[
- ifrstm + ilast * h_dim1], &c__1, &cr, &sr);
- if (ilast < ilastm) {
- i__2 = ilastm - ilast;
- drot_(&i__2, &t[ilast - 1 + (ilast + 1) * t_dim1], ldt, &t[
- ilast + (ilast + 1) * t_dim1], ldt, &cl, &sl);
- }
- if (ifrstm < ilast - 1) {
- i__2 = ifirst - ifrstm;
- drot_(&i__2, &t[ifrstm + (ilast - 1) * t_dim1], &c__1, &t[
- ifrstm + ilast * t_dim1], &c__1, &cr, &sr);
- }
- if (ilq) {
- drot_(n, &q[(ilast - 1) * q_dim1 + 1], &c__1, &q[ilast *
- q_dim1 + 1], &c__1, &cl, &sl);
- }
- if (ilz) {
- drot_(n, &z__[(ilast - 1) * z_dim1 + 1], &c__1, &z__[ilast *
- z_dim1 + 1], &c__1, &cr, &sr);
- }
- t[ilast - 1 + (ilast - 1) * t_dim1] = b11;
- t[ilast - 1 + ilast * t_dim1] = 0.;
- t[ilast + (ilast - 1) * t_dim1] = 0.;
- t[ilast + ilast * t_dim1] = b22;
- /* If B22 is negative, negate column ILAST */
- if (b22 < 0.) {
- i__2 = ilast;
- for (j = ifrstm; j <= i__2; ++j) {
- h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
- t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
- /* L210: */
- }
- if (ilz) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
- /* L220: */
- }
- }
- }
- /* Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) */
- /* Recompute shift */
- d__1 = safmin * 100.;
- dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1
- + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &temp, &wr, &
- temp2, &wi);
- /* If standardization has perturbed the shift onto real line, */
- /* do another (real single-shift) QR step. */
- if (wi == 0.) {
- goto L350;
- }
- s1inv = 1. / s1;
- /* Do EISPACK (QZVAL) computation of alpha and beta */
- a11 = h__[ilast - 1 + (ilast - 1) * h_dim1];
- a21 = h__[ilast + (ilast - 1) * h_dim1];
- a12 = h__[ilast - 1 + ilast * h_dim1];
- a22 = h__[ilast + ilast * h_dim1];
- /* Compute complex Givens rotation on right */
- /* (Assume some element of C = (sA - wB) > unfl ) */
- /* __ */
- /* (sA - wB) ( CZ -SZ ) */
- /* ( SZ CZ ) */
- c11r = s1 * a11 - wr * b11;
- c11i = -wi * b11;
- c12 = s1 * a12;
- c21 = s1 * a21;
- c22r = s1 * a22 - wr * b22;
- c22i = -wi * b22;
- if (abs(c11r) + abs(c11i) + abs(c12) > abs(c21) + abs(c22r) + abs(
- c22i)) {
- t1 = dlapy3_(&c12, &c11r, &c11i);
- cz = c12 / t1;
- szr = -c11r / t1;
- szi = -c11i / t1;
- } else {
- cz = dlapy2_(&c22r, &c22i);
- if (cz <= safmin) {
- cz = 0.;
- szr = 1.;
- szi = 0.;
- } else {
- tempr = c22r / cz;
- tempi = c22i / cz;
- t1 = dlapy2_(&cz, &c21);
- cz /= t1;
- szr = -c21 * tempr / t1;
- szi = c21 * tempi / t1;
- }
- }
- /* Compute Givens rotation on left */
- /* ( CQ SQ ) */
- /* ( __ ) A or B */
- /* ( -SQ CQ ) */
- an = abs(a11) + abs(a12) + abs(a21) + abs(a22);
- bn = abs(b11) + abs(b22);
- wabs = abs(wr) + abs(wi);
- if (s1 * an > wabs * bn) {
- cq = cz * b11;
- sqr = szr * b22;
- sqi = -szi * b22;
- } else {
- a1r = cz * a11 + szr * a12;
- a1i = szi * a12;
- a2r = cz * a21 + szr * a22;
- a2i = szi * a22;
- cq = dlapy2_(&a1r, &a1i);
- if (cq <= safmin) {
- cq = 0.;
- sqr = 1.;
- sqi = 0.;
- } else {
- tempr = a1r / cq;
- tempi = a1i / cq;
- sqr = tempr * a2r + tempi * a2i;
- sqi = tempi * a2r - tempr * a2i;
- }
- }
- t1 = dlapy3_(&cq, &sqr, &sqi);
- cq /= t1;
- sqr /= t1;
- sqi /= t1;
- /* Compute diagonal elements of QBZ */
- tempr = sqr * szr - sqi * szi;
- tempi = sqr * szi + sqi * szr;
- b1r = cq * cz * b11 + tempr * b22;
- b1i = tempi * b22;
- b1a = dlapy2_(&b1r, &b1i);
- b2r = cq * cz * b22 + tempr * b11;
- b2i = -tempi * b11;
- b2a = dlapy2_(&b2r, &b2i);
- /* Normalize so beta > 0, and Im( alpha1 ) > 0 */
- beta[ilast - 1] = b1a;
- beta[ilast] = b2a;
- alphar[ilast - 1] = wr * b1a * s1inv;
- alphai[ilast - 1] = wi * b1a * s1inv;
- alphar[ilast] = wr * b2a * s1inv;
- alphai[ilast] = -(wi * b2a) * s1inv;
- /* Step 3: Go to next block -- exit if finished. */
- ilast = ifirst - 1;
- if (ilast < *ilo) {
- goto L380;
- }
- /* Reset counters */
- iiter = 0;
- eshift = 0.;
- if (! ilschr) {
- ilastm = ilast;
- if (ifrstm > ilast) {
- ifrstm = *ilo;
- }
- }
- goto L350;
- } else {
- /* Usual case: 3x3 or larger block, using Francis implicit */
- /* double-shift */
- /* 2 */
- /* Eigenvalue equation is w - c w + d = 0, */
- /* -1 2 -1 */
- /* so compute 1st column of (A B ) - c A B + d */
- /* using the formula in QZIT (from EISPACK) */
- /* We assume that the block is at least 3x3 */
- ad11 = ascale * h__[ilast - 1 + (ilast - 1) * h_dim1] / (bscale *
- t[ilast - 1 + (ilast - 1) * t_dim1]);
- ad21 = ascale * h__[ilast + (ilast - 1) * h_dim1] / (bscale * t[
- ilast - 1 + (ilast - 1) * t_dim1]);
- ad12 = ascale * h__[ilast - 1 + ilast * h_dim1] / (bscale * t[
- ilast + ilast * t_dim1]);
- ad22 = ascale * h__[ilast + ilast * h_dim1] / (bscale * t[ilast +
- ilast * t_dim1]);
- u12 = t[ilast - 1 + ilast * t_dim1] / t[ilast + ilast * t_dim1];
- ad11l = ascale * h__[ifirst + ifirst * h_dim1] / (bscale * t[
- ifirst + ifirst * t_dim1]);
- ad21l = ascale * h__[ifirst + 1 + ifirst * h_dim1] / (bscale * t[
- ifirst + ifirst * t_dim1]);
- ad12l = ascale * h__[ifirst + (ifirst + 1) * h_dim1] / (bscale *
- t[ifirst + 1 + (ifirst + 1) * t_dim1]);
- ad22l = ascale * h__[ifirst + 1 + (ifirst + 1) * h_dim1] / (
- bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
- ad32l = ascale * h__[ifirst + 2 + (ifirst + 1) * h_dim1] / (
- bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
- u12l = t[ifirst + (ifirst + 1) * t_dim1] / t[ifirst + 1 + (ifirst
- + 1) * t_dim1];
- v[0] = (ad11 - ad11l) * (ad22 - ad11l) - ad12 * ad21 + ad21 * u12
- * ad11l + (ad12l - ad11l * u12l) * ad21l;
- v[1] = (ad22l - ad11l - ad21l * u12l - (ad11 - ad11l) - (ad22 -
- ad11l) + ad21 * u12) * ad21l;
- v[2] = ad32l * ad21l;
- istart = ifirst;
- dlarfg_(&c__3, v, &v[1], &c__1, &tau);
- v[0] = 1.;
- /* Sweep */
- i__2 = ilast - 2;
- for (j = istart; j <= i__2; ++j) {
- /* All but last elements: use 3x3 Householder transforms. */
- /* Zero (j-1)st column of A */
- if (j > istart) {
- v[0] = h__[j + (j - 1) * h_dim1];
- v[1] = h__[j + 1 + (j - 1) * h_dim1];
- v[2] = h__[j + 2 + (j - 1) * h_dim1];
- dlarfg_(&c__3, &h__[j + (j - 1) * h_dim1], &v[1], &c__1, &
- tau);
- v[0] = 1.;
- h__[j + 1 + (j - 1) * h_dim1] = 0.;
- h__[j + 2 + (j - 1) * h_dim1] = 0.;
- }
- i__3 = ilastm;
- for (jc = j; jc <= i__3; ++jc) {
- temp = tau * (h__[j + jc * h_dim1] + v[1] * h__[j + 1 +
- jc * h_dim1] + v[2] * h__[j + 2 + jc * h_dim1]);
- h__[j + jc * h_dim1] -= temp;
- h__[j + 1 + jc * h_dim1] -= temp * v[1];
- h__[j + 2 + jc * h_dim1] -= temp * v[2];
- temp2 = tau * (t[j + jc * t_dim1] + v[1] * t[j + 1 + jc *
- t_dim1] + v[2] * t[j + 2 + jc * t_dim1]);
- t[j + jc * t_dim1] -= temp2;
- t[j + 1 + jc * t_dim1] -= temp2 * v[1];
- t[j + 2 + jc * t_dim1] -= temp2 * v[2];
- /* L230: */
- }
- if (ilq) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = tau * (q[jr + j * q_dim1] + v[1] * q[jr + (j +
- 1) * q_dim1] + v[2] * q[jr + (j + 2) * q_dim1]
- );
- q[jr + j * q_dim1] -= temp;
- q[jr + (j + 1) * q_dim1] -= temp * v[1];
- q[jr + (j + 2) * q_dim1] -= temp * v[2];
- /* L240: */
- }
- }
- /* Zero j-th column of B (see DLAGBC for details) */
- /* Swap rows to pivot */
- ilpivt = FALSE_;
- /* Computing MAX */
- d__3 = (d__1 = t[j + 1 + (j + 1) * t_dim1], abs(d__1)), d__4 =
- (d__2 = t[j + 1 + (j + 2) * t_dim1], abs(d__2));
- temp = max(d__3,d__4);
- /* Computing MAX */
- d__3 = (d__1 = t[j + 2 + (j + 1) * t_dim1], abs(d__1)), d__4 =
- (d__2 = t[j + 2 + (j + 2) * t_dim1], abs(d__2));
- temp2 = max(d__3,d__4);
- if (max(temp,temp2) < safmin) {
- scale = 0.;
- u1 = 1.;
- u2 = 0.;
- goto L250;
- } else if (temp >= temp2) {
- w11 = t[j + 1 + (j + 1) * t_dim1];
- w21 = t[j + 2 + (j + 1) * t_dim1];
- w12 = t[j + 1 + (j + 2) * t_dim1];
- w22 = t[j + 2 + (j + 2) * t_dim1];
- u1 = t[j + 1 + j * t_dim1];
- u2 = t[j + 2 + j * t_dim1];
- } else {
- w21 = t[j + 1 + (j + 1) * t_dim1];
- w11 = t[j + 2 + (j + 1) * t_dim1];
- w22 = t[j + 1 + (j + 2) * t_dim1];
- w12 = t[j + 2 + (j + 2) * t_dim1];
- u2 = t[j + 1 + j * t_dim1];
- u1 = t[j + 2 + j * t_dim1];
- }
- /* Swap columns if nec. */
- if (abs(w12) > abs(w11)) {
- ilpivt = TRUE_;
- temp = w12;
- temp2 = w22;
- w12 = w11;
- w22 = w21;
- w11 = temp;
- w21 = temp2;
- }
- /* LU-factor */
- temp = w21 / w11;
- u2 -= temp * u1;
- w22 -= temp * w12;
- w21 = 0.;
- /* Compute SCALE */
- scale = 1.;
- if (abs(w22) < safmin) {
- scale = 0.;
- u2 = 1.;
- u1 = -w12 / w11;
- goto L250;
- }
- if (abs(w22) < abs(u2)) {
- scale = (d__1 = w22 / u2, abs(d__1));
- }
- if (abs(w11) < abs(u1)) {
- /* Computing MIN */
- d__2 = scale, d__3 = (d__1 = w11 / u1, abs(d__1));
- scale = min(d__2,d__3);
- }
- /* Solve */
- u2 = scale * u2 / w22;
- u1 = (scale * u1 - w12 * u2) / w11;
- L250:
- if (ilpivt) {
- temp = u2;
- u2 = u1;
- u1 = temp;
- }
- /* Compute Householder Vector */
- /* Computing 2nd power */
- d__1 = scale;
- /* Computing 2nd power */
- d__2 = u1;
- /* Computing 2nd power */
- d__3 = u2;
- t1 = sqrt(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
- tau = scale / t1 + 1.;
- vs = -1. / (scale + t1);
- v[0] = 1.;
- v[1] = vs * u1;
- v[2] = vs * u2;
- /* Apply transformations from the right. */
- /* Computing MIN */
- i__4 = j + 3;
- i__3 = min(i__4,ilast);
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = tau * (h__[jr + j * h_dim1] + v[1] * h__[jr + (j +
- 1) * h_dim1] + v[2] * h__[jr + (j + 2) * h_dim1]);
- h__[jr + j * h_dim1] -= temp;
- h__[jr + (j + 1) * h_dim1] -= temp * v[1];
- h__[jr + (j + 2) * h_dim1] -= temp * v[2];
- /* L260: */
- }
- i__3 = j + 2;
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = tau * (t[jr + j * t_dim1] + v[1] * t[jr + (j + 1) *
- t_dim1] + v[2] * t[jr + (j + 2) * t_dim1]);
- t[jr + j * t_dim1] -= temp;
- t[jr + (j + 1) * t_dim1] -= temp * v[1];
- t[jr + (j + 2) * t_dim1] -= temp * v[2];
- /* L270: */
- }
- if (ilz) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = tau * (z__[jr + j * z_dim1] + v[1] * z__[jr + (
- j + 1) * z_dim1] + v[2] * z__[jr + (j + 2) *
- z_dim1]);
- z__[jr + j * z_dim1] -= temp;
- z__[jr + (j + 1) * z_dim1] -= temp * v[1];
- z__[jr + (j + 2) * z_dim1] -= temp * v[2];
- /* L280: */
- }
- }
- t[j + 1 + j * t_dim1] = 0.;
- t[j + 2 + j * t_dim1] = 0.;
- /* L290: */
- }
- /* Last elements: Use Givens rotations */
- /* Rotations from the left */
- j = ilast - 1;
- temp = h__[j + (j - 1) * h_dim1];
- dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[j +
- (j - 1) * h_dim1]);
- h__[j + 1 + (j - 1) * h_dim1] = 0.;
- i__2 = ilastm;
- for (jc = j; jc <= i__2; ++jc) {
- temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc *
- h_dim1];
- h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ *
- h__[j + 1 + jc * h_dim1];
- h__[j + jc * h_dim1] = temp;
- temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
- t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j
- + 1 + jc * t_dim1];
- t[j + jc * t_dim1] = temp2;
- /* L300: */
- }
- if (ilq) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) *
- q_dim1];
- q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
- q[jr + (j + 1) * q_dim1];
- q[jr + j * q_dim1] = temp;
- /* L310: */
- }
- }
- /* Rotations from the right. */
- temp = t[j + 1 + (j + 1) * t_dim1];
- dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
- 1) * t_dim1]);
- t[j + 1 + j * t_dim1] = 0.;
- i__2 = ilast;
- for (jr = ifrstm; jr <= i__2; ++jr) {
- temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j *
- h_dim1];
- h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
- h__[jr + j * h_dim1];
- h__[jr + (j + 1) * h_dim1] = temp;
- /* L320: */
- }
- i__2 = ilast - 1;
- for (jr = ifrstm; jr <= i__2; ++jr) {
- temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
- ;
- t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
- jr + j * t_dim1];
- t[jr + (j + 1) * t_dim1] = temp;
- /* L330: */
- }
- if (ilz) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
- z_dim1];
- z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] +
- c__ * z__[jr + j * z_dim1];
- z__[jr + (j + 1) * z_dim1] = temp;
- /* L340: */
- }
- }
- /* End of Double-Shift code */
- }
- goto L350;
- /* End of iteration loop */
- L350:
- /* L360: */
- ;
- }
- /* Drop-through = non-convergence */
- *info = ilast;
- goto L420;
- /* Successful completion of all QZ steps */
- L380:
- /* Set Eigenvalues 1:ILO-1 */
- i__1 = *ilo - 1;
- for (j = 1; j <= i__1; ++j) {
- if (t[j + j * t_dim1] < 0.) {
- if (ilschr) {
- i__2 = j;
- for (jr = 1; jr <= i__2; ++jr) {
- h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
- t[jr + j * t_dim1] = -t[jr + j * t_dim1];
- /* L390: */
- }
- } else {
- h__[j + j * h_dim1] = -h__[j + j * h_dim1];
- t[j + j * t_dim1] = -t[j + j * t_dim1];
- }
- if (ilz) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
- /* L400: */
- }
- }
- }
- alphar[j] = h__[j + j * h_dim1];
- alphai[j] = 0.;
- beta[j] = t[j + j * t_dim1];
- /* L410: */
- }
- /* Normal Termination */
- *info = 0;
- /* Exit (other than argument error) -- return optimal workspace size */
- L420:
- work[1] = (doublereal) (*n);
- return 0;
- /* End of DHGEQZ */
- } /* dhgeqz_ */
|