123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- /* dggev.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c__0 = 0;
- static integer c_n1 = -1;
- static doublereal c_b36 = 0.;
- static doublereal c_b37 = 1.;
- /* Subroutine */ int dggev_(char *jobvl, char *jobvr, integer *n, doublereal *
- a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
- doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
- doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2;
- doublereal d__1, d__2, d__3, d__4;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer jc, in, jr, ihi, ilo;
- doublereal eps;
- logical ilv;
- doublereal anrm, bnrm;
- integer ierr, itau;
- doublereal temp;
- logical ilvl, ilvr;
- integer iwrk;
- extern logical lsame_(char *, char *);
- integer ileft, icols, irows;
- extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dggbak_(
- char *, char *, integer *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer
- *, doublereal *, integer *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *);
- extern doublereal dlamch_(char *), dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- logical ilascl, ilbscl;
- extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- dlacpy_(char *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *), dlaset_(char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal
- *, integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, integer *, integer *, doublereal *,
- integer *);
- logical ldumma[1];
- char chtemp[1];
- doublereal bignum;
- extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *), xerbla_(char *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer ijobvl, iright, ijobvr;
- extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *);
- doublereal anrmto, bnrmto;
- extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- integer minwrk, maxwrk;
- doublereal smlnum;
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
- /* the generalized eigenvalues, and optionally, the left and/or right */
- /* generalized eigenvectors. */
- /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
- /* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
- /* singular. It is usually represented as the pair (alpha,beta), as */
- /* there is a reasonable interpretation for beta=0, and even for both */
- /* being zero. */
- /* The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
- /* of (A,B) satisfies */
- /* A * v(j) = lambda(j) * B * v(j). */
- /* The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
- /* of (A,B) satisfies */
- /* u(j)**H * A = lambda(j) * u(j)**H * B . */
- /* where u(j)**H is the conjugate-transpose of u(j). */
- /* Arguments */
- /* ========= */
- /* JOBVL (input) CHARACTER*1 */
- /* = 'N': do not compute the left generalized eigenvectors; */
- /* = 'V': compute the left generalized eigenvectors. */
- /* JOBVR (input) CHARACTER*1 */
- /* = 'N': do not compute the right generalized eigenvectors; */
- /* = 'V': compute the right generalized eigenvectors. */
- /* N (input) INTEGER */
- /* The order of the matrices A, B, VL, and VR. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the matrix A in the pair (A,B). */
- /* On exit, A has been overwritten. */
- /* LDA (input) INTEGER */
- /* The leading dimension of A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
- /* On entry, the matrix B in the pair (A,B). */
- /* On exit, B has been overwritten. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B. LDB >= max(1,N). */
- /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
- /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
- /* be the generalized eigenvalues. If ALPHAI(j) is zero, then */
- /* the j-th eigenvalue is real; if positive, then the j-th and */
- /* (j+1)-st eigenvalues are a complex conjugate pair, with */
- /* ALPHAI(j+1) negative. */
- /* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
- /* may easily over- or underflow, and BETA(j) may even be zero. */
- /* Thus, the user should avoid naively computing the ratio */
- /* alpha/beta. However, ALPHAR and ALPHAI will be always less */
- /* than and usually comparable with norm(A) in magnitude, and */
- /* BETA always less than and usually comparable with norm(B). */
- /* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) */
- /* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
- /* after another in the columns of VL, in the same order as */
- /* their eigenvalues. If the j-th eigenvalue is real, then */
- /* u(j) = VL(:,j), the j-th column of VL. If the j-th and */
- /* (j+1)-th eigenvalues form a complex conjugate pair, then */
- /* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
- /* Each eigenvector is scaled so the largest component has */
- /* abs(real part)+abs(imag. part)=1. */
- /* Not referenced if JOBVL = 'N'. */
- /* LDVL (input) INTEGER */
- /* The leading dimension of the matrix VL. LDVL >= 1, and */
- /* if JOBVL = 'V', LDVL >= N. */
- /* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) */
- /* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
- /* after another in the columns of VR, in the same order as */
- /* their eigenvalues. If the j-th eigenvalue is real, then */
- /* v(j) = VR(:,j), the j-th column of VR. If the j-th and */
- /* (j+1)-th eigenvalues form a complex conjugate pair, then */
- /* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
- /* Each eigenvector is scaled so the largest component has */
- /* abs(real part)+abs(imag. part)=1. */
- /* Not referenced if JOBVR = 'N'. */
- /* LDVR (input) INTEGER */
- /* The leading dimension of the matrix VR. LDVR >= 1, and */
- /* if JOBVR = 'V', LDVR >= N. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,8*N). */
- /* For good performance, LWORK must generally be larger. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* = 1,...,N: */
- /* The QZ iteration failed. No eigenvectors have been */
- /* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
- /* should be correct for j=INFO+1,...,N. */
- /* > N: =N+1: other than QZ iteration failed in DHGEQZ. */
- /* =N+2: error return from DTGEVC. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1;
- vr -= vr_offset;
- --work;
- /* Function Body */
- if (lsame_(jobvl, "N")) {
- ijobvl = 1;
- ilvl = FALSE_;
- } else if (lsame_(jobvl, "V")) {
- ijobvl = 2;
- ilvl = TRUE_;
- } else {
- ijobvl = -1;
- ilvl = FALSE_;
- }
- if (lsame_(jobvr, "N")) {
- ijobvr = 1;
- ilvr = FALSE_;
- } else if (lsame_(jobvr, "V")) {
- ijobvr = 2;
- ilvr = TRUE_;
- } else {
- ijobvr = -1;
- ilvr = FALSE_;
- }
- ilv = ilvl || ilvr;
- /* Test the input arguments */
- *info = 0;
- lquery = *lwork == -1;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
- *info = -12;
- } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
- *info = -14;
- }
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV. The workspace is */
- /* computed assuming ILO = 1 and IHI = N, the worst case.) */
- if (*info == 0) {
- /* Computing MAX */
- i__1 = 1, i__2 = *n << 3;
- minwrk = max(i__1,i__2);
- /* Computing MAX */
- i__1 = 1, i__2 = *n * (ilaenv_(&c__1, "DGEQRF", " ", n, &c__1, n, &
- c__0) + 7);
- maxwrk = max(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORMQR", " ", n, &c__1, n,
- &c__0) + 7);
- maxwrk = max(i__1,i__2);
- if (ilvl) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORGQR", " ", n, &
- c__1, n, &c_n1) + 7);
- maxwrk = max(i__1,i__2);
- }
- work[1] = (doublereal) maxwrk;
- if (*lwork < minwrk && ! lquery) {
- *info = -16;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGGEV ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Get machine constants */
- eps = dlamch_("P");
- smlnum = dlamch_("S");
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1. / smlnum;
- /* Scale A if max element outside range [SMLNUM,BIGNUM] */
- anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
- ilascl = FALSE_;
- if (anrm > 0. && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
- if (ilascl) {
- dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- ierr);
- }
- /* Scale B if max element outside range [SMLNUM,BIGNUM] */
- bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
- ilbscl = FALSE_;
- if (bnrm > 0. && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
- if (ilbscl) {
- dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- ierr);
- }
- /* Permute the matrices A, B to isolate eigenvalues if possible */
- /* (Workspace: need 6*N) */
- ileft = 1;
- iright = *n + 1;
- iwrk = iright + *n;
- dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
- ileft], &work[iright], &work[iwrk], &ierr);
- /* Reduce B to triangular form (QR decomposition of B) */
- /* (Workspace: need N, prefer N*NB) */
- irows = ihi + 1 - ilo;
- if (ilv) {
- icols = *n + 1 - ilo;
- } else {
- icols = irows;
- }
- itau = iwrk;
- iwrk = itau + irows;
- i__1 = *lwork + 1 - iwrk;
- dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwrk], &i__1, &ierr);
- /* Apply the orthogonal transformation to matrix A */
- /* (Workspace: need N, prefer N*NB) */
- i__1 = *lwork + 1 - iwrk;
- dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
- ierr);
- /* Initialize VL */
- /* (Workspace: need N, prefer N*NB) */
- if (ilvl) {
- dlaset_("Full", n, n, &c_b36, &c_b37, &vl[vl_offset], ldvl)
- ;
- if (irows > 1) {
- i__1 = irows - 1;
- i__2 = irows - 1;
- dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
- ilo + 1 + ilo * vl_dim1], ldvl);
- }
- i__1 = *lwork + 1 - iwrk;
- dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
- itau], &work[iwrk], &i__1, &ierr);
- }
- /* Initialize VR */
- if (ilvr) {
- dlaset_("Full", n, n, &c_b36, &c_b37, &vr[vr_offset], ldvr)
- ;
- }
- /* Reduce to generalized Hessenberg form */
- /* (Workspace: none needed) */
- if (ilv) {
- /* Eigenvectors requested -- work on whole matrix. */
- dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
- } else {
- dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
- &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
- vr_offset], ldvr, &ierr);
- }
- /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
- /* Schur forms and Schur vectors) */
- /* (Workspace: need N) */
- iwrk = itau;
- if (ilv) {
- *(unsigned char *)chtemp = 'S';
- } else {
- *(unsigned char *)chtemp = 'E';
- }
- i__1 = *lwork + 1 - iwrk;
- dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
- ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
- if (ierr != 0) {
- if (ierr > 0 && ierr <= *n) {
- *info = ierr;
- } else if (ierr > *n && ierr <= *n << 1) {
- *info = ierr - *n;
- } else {
- *info = *n + 1;
- }
- goto L110;
- }
- /* Compute Eigenvectors */
- /* (Workspace: need 6*N) */
- if (ilv) {
- if (ilvl) {
- if (ilvr) {
- *(unsigned char *)chtemp = 'B';
- } else {
- *(unsigned char *)chtemp = 'L';
- }
- } else {
- *(unsigned char *)chtemp = 'R';
- }
- dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
- &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
- iwrk], &ierr);
- if (ierr != 0) {
- *info = *n + 2;
- goto L110;
- }
- /* Undo balancing on VL and VR and normalization */
- /* (Workspace: none needed) */
- if (ilvl) {
- dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
- vl[vl_offset], ldvl, &ierr);
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- if (alphai[jc] < 0.) {
- goto L50;
- }
- temp = 0.;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
- abs(d__1));
- temp = max(d__2,d__3);
- /* L10: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
- abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
- vl_dim1], abs(d__2));
- temp = max(d__3,d__4);
- /* L20: */
- }
- }
- if (temp < smlnum) {
- goto L50;
- }
- temp = 1. / temp;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + jc * vl_dim1] *= temp;
- /* L30: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + jc * vl_dim1] *= temp;
- vl[jr + (jc + 1) * vl_dim1] *= temp;
- /* L40: */
- }
- }
- L50:
- ;
- }
- }
- if (ilvr) {
- dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
- vr[vr_offset], ldvr, &ierr);
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- if (alphai[jc] < 0.) {
- goto L100;
- }
- temp = 0.;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
- abs(d__1));
- temp = max(d__2,d__3);
- /* L60: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
- abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
- vr_dim1], abs(d__2));
- temp = max(d__3,d__4);
- /* L70: */
- }
- }
- if (temp < smlnum) {
- goto L100;
- }
- temp = 1. / temp;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + jc * vr_dim1] *= temp;
- /* L80: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + jc * vr_dim1] *= temp;
- vr[jr + (jc + 1) * vr_dim1] *= temp;
- /* L90: */
- }
- }
- L100:
- ;
- }
- }
- /* End of eigenvector calculation */
- }
- /* Undo scaling if necessary */
- if (ilascl) {
- dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
- ierr);
- dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
- ierr);
- }
- if (ilbscl) {
- dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- ierr);
- }
- L110:
- work[1] = (doublereal) maxwrk;
- return 0;
- /* End of DGGEV */
- } /* dggev_ */
|