dggev.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. /* dggev.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. static integer c__0 = 0;
  16. static integer c_n1 = -1;
  17. static doublereal c_b36 = 0.;
  18. static doublereal c_b37 = 1.;
  19. /* Subroutine */ int dggev_(char *jobvl, char *jobvr, integer *n, doublereal *
  20. a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
  21. doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
  22. doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
  23. integer *info)
  24. {
  25. /* System generated locals */
  26. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  27. vr_offset, i__1, i__2;
  28. doublereal d__1, d__2, d__3, d__4;
  29. /* Builtin functions */
  30. double sqrt(doublereal);
  31. /* Local variables */
  32. integer jc, in, jr, ihi, ilo;
  33. doublereal eps;
  34. logical ilv;
  35. doublereal anrm, bnrm;
  36. integer ierr, itau;
  37. doublereal temp;
  38. logical ilvl, ilvr;
  39. integer iwrk;
  40. extern logical lsame_(char *, char *);
  41. integer ileft, icols, irows;
  42. extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dggbak_(
  43. char *, char *, integer *, integer *, integer *, doublereal *,
  44. doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer
  45. *, doublereal *, integer *, integer *, integer *, doublereal *,
  46. doublereal *, doublereal *, integer *);
  47. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  48. integer *, doublereal *, integer *, doublereal *);
  49. extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *,
  50. integer *, doublereal *, integer *, doublereal *, integer *,
  51. doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
  52. *, doublereal *, integer *, integer *, doublereal *, integer *,
  53. integer *);
  54. logical ilascl, ilbscl;
  55. extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
  56. integer *, doublereal *, doublereal *, integer *, integer *),
  57. dlacpy_(char *, integer *, integer *, doublereal *, integer *,
  58. doublereal *, integer *), dlaset_(char *, integer *,
  59. integer *, doublereal *, doublereal *, doublereal *, integer *), dtgevc_(char *, char *, logical *, integer *, doublereal
  60. *, integer *, doublereal *, integer *, doublereal *, integer *,
  61. doublereal *, integer *, integer *, integer *, doublereal *,
  62. integer *);
  63. logical ldumma[1];
  64. char chtemp[1];
  65. doublereal bignum;
  66. extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *,
  67. integer *, integer *, doublereal *, integer *, doublereal *,
  68. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  69. integer *, doublereal *, integer *, doublereal *, integer *,
  70. integer *), xerbla_(char *, integer *);
  71. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  72. integer *, integer *);
  73. integer ijobvl, iright, ijobvr;
  74. extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
  75. doublereal *, integer *, doublereal *, doublereal *, integer *,
  76. integer *);
  77. doublereal anrmto, bnrmto;
  78. extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
  79. integer *, doublereal *, integer *, doublereal *, doublereal *,
  80. integer *, doublereal *, integer *, integer *);
  81. integer minwrk, maxwrk;
  82. doublereal smlnum;
  83. logical lquery;
  84. /* -- LAPACK driver routine (version 3.2) -- */
  85. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  86. /* November 2006 */
  87. /* .. Scalar Arguments .. */
  88. /* .. */
  89. /* .. Array Arguments .. */
  90. /* .. */
  91. /* Purpose */
  92. /* ======= */
  93. /* DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
  94. /* the generalized eigenvalues, and optionally, the left and/or right */
  95. /* generalized eigenvectors. */
  96. /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
  97. /* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
  98. /* singular. It is usually represented as the pair (alpha,beta), as */
  99. /* there is a reasonable interpretation for beta=0, and even for both */
  100. /* being zero. */
  101. /* The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
  102. /* of (A,B) satisfies */
  103. /* A * v(j) = lambda(j) * B * v(j). */
  104. /* The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
  105. /* of (A,B) satisfies */
  106. /* u(j)**H * A = lambda(j) * u(j)**H * B . */
  107. /* where u(j)**H is the conjugate-transpose of u(j). */
  108. /* Arguments */
  109. /* ========= */
  110. /* JOBVL (input) CHARACTER*1 */
  111. /* = 'N': do not compute the left generalized eigenvectors; */
  112. /* = 'V': compute the left generalized eigenvectors. */
  113. /* JOBVR (input) CHARACTER*1 */
  114. /* = 'N': do not compute the right generalized eigenvectors; */
  115. /* = 'V': compute the right generalized eigenvectors. */
  116. /* N (input) INTEGER */
  117. /* The order of the matrices A, B, VL, and VR. N >= 0. */
  118. /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
  119. /* On entry, the matrix A in the pair (A,B). */
  120. /* On exit, A has been overwritten. */
  121. /* LDA (input) INTEGER */
  122. /* The leading dimension of A. LDA >= max(1,N). */
  123. /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
  124. /* On entry, the matrix B in the pair (A,B). */
  125. /* On exit, B has been overwritten. */
  126. /* LDB (input) INTEGER */
  127. /* The leading dimension of B. LDB >= max(1,N). */
  128. /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
  129. /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
  130. /* BETA (output) DOUBLE PRECISION array, dimension (N) */
  131. /* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  132. /* be the generalized eigenvalues. If ALPHAI(j) is zero, then */
  133. /* the j-th eigenvalue is real; if positive, then the j-th and */
  134. /* (j+1)-st eigenvalues are a complex conjugate pair, with */
  135. /* ALPHAI(j+1) negative. */
  136. /* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  137. /* may easily over- or underflow, and BETA(j) may even be zero. */
  138. /* Thus, the user should avoid naively computing the ratio */
  139. /* alpha/beta. However, ALPHAR and ALPHAI will be always less */
  140. /* than and usually comparable with norm(A) in magnitude, and */
  141. /* BETA always less than and usually comparable with norm(B). */
  142. /* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) */
  143. /* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  144. /* after another in the columns of VL, in the same order as */
  145. /* their eigenvalues. If the j-th eigenvalue is real, then */
  146. /* u(j) = VL(:,j), the j-th column of VL. If the j-th and */
  147. /* (j+1)-th eigenvalues form a complex conjugate pair, then */
  148. /* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
  149. /* Each eigenvector is scaled so the largest component has */
  150. /* abs(real part)+abs(imag. part)=1. */
  151. /* Not referenced if JOBVL = 'N'. */
  152. /* LDVL (input) INTEGER */
  153. /* The leading dimension of the matrix VL. LDVL >= 1, and */
  154. /* if JOBVL = 'V', LDVL >= N. */
  155. /* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) */
  156. /* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  157. /* after another in the columns of VR, in the same order as */
  158. /* their eigenvalues. If the j-th eigenvalue is real, then */
  159. /* v(j) = VR(:,j), the j-th column of VR. If the j-th and */
  160. /* (j+1)-th eigenvalues form a complex conjugate pair, then */
  161. /* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
  162. /* Each eigenvector is scaled so the largest component has */
  163. /* abs(real part)+abs(imag. part)=1. */
  164. /* Not referenced if JOBVR = 'N'. */
  165. /* LDVR (input) INTEGER */
  166. /* The leading dimension of the matrix VR. LDVR >= 1, and */
  167. /* if JOBVR = 'V', LDVR >= N. */
  168. /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  169. /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  170. /* LWORK (input) INTEGER */
  171. /* The dimension of the array WORK. LWORK >= max(1,8*N). */
  172. /* For good performance, LWORK must generally be larger. */
  173. /* If LWORK = -1, then a workspace query is assumed; the routine */
  174. /* only calculates the optimal size of the WORK array, returns */
  175. /* this value as the first entry of the WORK array, and no error */
  176. /* message related to LWORK is issued by XERBLA. */
  177. /* INFO (output) INTEGER */
  178. /* = 0: successful exit */
  179. /* < 0: if INFO = -i, the i-th argument had an illegal value. */
  180. /* = 1,...,N: */
  181. /* The QZ iteration failed. No eigenvectors have been */
  182. /* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
  183. /* should be correct for j=INFO+1,...,N. */
  184. /* > N: =N+1: other than QZ iteration failed in DHGEQZ. */
  185. /* =N+2: error return from DTGEVC. */
  186. /* ===================================================================== */
  187. /* .. Parameters .. */
  188. /* .. */
  189. /* .. Local Scalars .. */
  190. /* .. */
  191. /* .. Local Arrays .. */
  192. /* .. */
  193. /* .. External Subroutines .. */
  194. /* .. */
  195. /* .. External Functions .. */
  196. /* .. */
  197. /* .. Intrinsic Functions .. */
  198. /* .. */
  199. /* .. Executable Statements .. */
  200. /* Decode the input arguments */
  201. /* Parameter adjustments */
  202. a_dim1 = *lda;
  203. a_offset = 1 + a_dim1;
  204. a -= a_offset;
  205. b_dim1 = *ldb;
  206. b_offset = 1 + b_dim1;
  207. b -= b_offset;
  208. --alphar;
  209. --alphai;
  210. --beta;
  211. vl_dim1 = *ldvl;
  212. vl_offset = 1 + vl_dim1;
  213. vl -= vl_offset;
  214. vr_dim1 = *ldvr;
  215. vr_offset = 1 + vr_dim1;
  216. vr -= vr_offset;
  217. --work;
  218. /* Function Body */
  219. if (lsame_(jobvl, "N")) {
  220. ijobvl = 1;
  221. ilvl = FALSE_;
  222. } else if (lsame_(jobvl, "V")) {
  223. ijobvl = 2;
  224. ilvl = TRUE_;
  225. } else {
  226. ijobvl = -1;
  227. ilvl = FALSE_;
  228. }
  229. if (lsame_(jobvr, "N")) {
  230. ijobvr = 1;
  231. ilvr = FALSE_;
  232. } else if (lsame_(jobvr, "V")) {
  233. ijobvr = 2;
  234. ilvr = TRUE_;
  235. } else {
  236. ijobvr = -1;
  237. ilvr = FALSE_;
  238. }
  239. ilv = ilvl || ilvr;
  240. /* Test the input arguments */
  241. *info = 0;
  242. lquery = *lwork == -1;
  243. if (ijobvl <= 0) {
  244. *info = -1;
  245. } else if (ijobvr <= 0) {
  246. *info = -2;
  247. } else if (*n < 0) {
  248. *info = -3;
  249. } else if (*lda < max(1,*n)) {
  250. *info = -5;
  251. } else if (*ldb < max(1,*n)) {
  252. *info = -7;
  253. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  254. *info = -12;
  255. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  256. *info = -14;
  257. }
  258. /* Compute workspace */
  259. /* (Note: Comments in the code beginning "Workspace:" describe the */
  260. /* minimal amount of workspace needed at that point in the code, */
  261. /* as well as the preferred amount for good performance. */
  262. /* NB refers to the optimal block size for the immediately */
  263. /* following subroutine, as returned by ILAENV. The workspace is */
  264. /* computed assuming ILO = 1 and IHI = N, the worst case.) */
  265. if (*info == 0) {
  266. /* Computing MAX */
  267. i__1 = 1, i__2 = *n << 3;
  268. minwrk = max(i__1,i__2);
  269. /* Computing MAX */
  270. i__1 = 1, i__2 = *n * (ilaenv_(&c__1, "DGEQRF", " ", n, &c__1, n, &
  271. c__0) + 7);
  272. maxwrk = max(i__1,i__2);
  273. /* Computing MAX */
  274. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORMQR", " ", n, &c__1, n,
  275. &c__0) + 7);
  276. maxwrk = max(i__1,i__2);
  277. if (ilvl) {
  278. /* Computing MAX */
  279. i__1 = maxwrk, i__2 = *n * (ilaenv_(&c__1, "DORGQR", " ", n, &
  280. c__1, n, &c_n1) + 7);
  281. maxwrk = max(i__1,i__2);
  282. }
  283. work[1] = (doublereal) maxwrk;
  284. if (*lwork < minwrk && ! lquery) {
  285. *info = -16;
  286. }
  287. }
  288. if (*info != 0) {
  289. i__1 = -(*info);
  290. xerbla_("DGGEV ", &i__1);
  291. return 0;
  292. } else if (lquery) {
  293. return 0;
  294. }
  295. /* Quick return if possible */
  296. if (*n == 0) {
  297. return 0;
  298. }
  299. /* Get machine constants */
  300. eps = dlamch_("P");
  301. smlnum = dlamch_("S");
  302. bignum = 1. / smlnum;
  303. dlabad_(&smlnum, &bignum);
  304. smlnum = sqrt(smlnum) / eps;
  305. bignum = 1. / smlnum;
  306. /* Scale A if max element outside range [SMLNUM,BIGNUM] */
  307. anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
  308. ilascl = FALSE_;
  309. if (anrm > 0. && anrm < smlnum) {
  310. anrmto = smlnum;
  311. ilascl = TRUE_;
  312. } else if (anrm > bignum) {
  313. anrmto = bignum;
  314. ilascl = TRUE_;
  315. }
  316. if (ilascl) {
  317. dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  318. ierr);
  319. }
  320. /* Scale B if max element outside range [SMLNUM,BIGNUM] */
  321. bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
  322. ilbscl = FALSE_;
  323. if (bnrm > 0. && bnrm < smlnum) {
  324. bnrmto = smlnum;
  325. ilbscl = TRUE_;
  326. } else if (bnrm > bignum) {
  327. bnrmto = bignum;
  328. ilbscl = TRUE_;
  329. }
  330. if (ilbscl) {
  331. dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  332. ierr);
  333. }
  334. /* Permute the matrices A, B to isolate eigenvalues if possible */
  335. /* (Workspace: need 6*N) */
  336. ileft = 1;
  337. iright = *n + 1;
  338. iwrk = iright + *n;
  339. dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  340. ileft], &work[iright], &work[iwrk], &ierr);
  341. /* Reduce B to triangular form (QR decomposition of B) */
  342. /* (Workspace: need N, prefer N*NB) */
  343. irows = ihi + 1 - ilo;
  344. if (ilv) {
  345. icols = *n + 1 - ilo;
  346. } else {
  347. icols = irows;
  348. }
  349. itau = iwrk;
  350. iwrk = itau + irows;
  351. i__1 = *lwork + 1 - iwrk;
  352. dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  353. iwrk], &i__1, &ierr);
  354. /* Apply the orthogonal transformation to matrix A */
  355. /* (Workspace: need N, prefer N*NB) */
  356. i__1 = *lwork + 1 - iwrk;
  357. dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  358. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  359. ierr);
  360. /* Initialize VL */
  361. /* (Workspace: need N, prefer N*NB) */
  362. if (ilvl) {
  363. dlaset_("Full", n, n, &c_b36, &c_b37, &vl[vl_offset], ldvl)
  364. ;
  365. if (irows > 1) {
  366. i__1 = irows - 1;
  367. i__2 = irows - 1;
  368. dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
  369. ilo + 1 + ilo * vl_dim1], ldvl);
  370. }
  371. i__1 = *lwork + 1 - iwrk;
  372. dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  373. itau], &work[iwrk], &i__1, &ierr);
  374. }
  375. /* Initialize VR */
  376. if (ilvr) {
  377. dlaset_("Full", n, n, &c_b36, &c_b37, &vr[vr_offset], ldvr)
  378. ;
  379. }
  380. /* Reduce to generalized Hessenberg form */
  381. /* (Workspace: none needed) */
  382. if (ilv) {
  383. /* Eigenvectors requested -- work on whole matrix. */
  384. dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  385. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
  386. } else {
  387. dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  388. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  389. vr_offset], ldvr, &ierr);
  390. }
  391. /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
  392. /* Schur forms and Schur vectors) */
  393. /* (Workspace: need N) */
  394. iwrk = itau;
  395. if (ilv) {
  396. *(unsigned char *)chtemp = 'S';
  397. } else {
  398. *(unsigned char *)chtemp = 'E';
  399. }
  400. i__1 = *lwork + 1 - iwrk;
  401. dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  402. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
  403. ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
  404. if (ierr != 0) {
  405. if (ierr > 0 && ierr <= *n) {
  406. *info = ierr;
  407. } else if (ierr > *n && ierr <= *n << 1) {
  408. *info = ierr - *n;
  409. } else {
  410. *info = *n + 1;
  411. }
  412. goto L110;
  413. }
  414. /* Compute Eigenvectors */
  415. /* (Workspace: need 6*N) */
  416. if (ilv) {
  417. if (ilvl) {
  418. if (ilvr) {
  419. *(unsigned char *)chtemp = 'B';
  420. } else {
  421. *(unsigned char *)chtemp = 'L';
  422. }
  423. } else {
  424. *(unsigned char *)chtemp = 'R';
  425. }
  426. dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  427. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  428. iwrk], &ierr);
  429. if (ierr != 0) {
  430. *info = *n + 2;
  431. goto L110;
  432. }
  433. /* Undo balancing on VL and VR and normalization */
  434. /* (Workspace: none needed) */
  435. if (ilvl) {
  436. dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  437. vl[vl_offset], ldvl, &ierr);
  438. i__1 = *n;
  439. for (jc = 1; jc <= i__1; ++jc) {
  440. if (alphai[jc] < 0.) {
  441. goto L50;
  442. }
  443. temp = 0.;
  444. if (alphai[jc] == 0.) {
  445. i__2 = *n;
  446. for (jr = 1; jr <= i__2; ++jr) {
  447. /* Computing MAX */
  448. d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
  449. abs(d__1));
  450. temp = max(d__2,d__3);
  451. /* L10: */
  452. }
  453. } else {
  454. i__2 = *n;
  455. for (jr = 1; jr <= i__2; ++jr) {
  456. /* Computing MAX */
  457. d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
  458. abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
  459. vl_dim1], abs(d__2));
  460. temp = max(d__3,d__4);
  461. /* L20: */
  462. }
  463. }
  464. if (temp < smlnum) {
  465. goto L50;
  466. }
  467. temp = 1. / temp;
  468. if (alphai[jc] == 0.) {
  469. i__2 = *n;
  470. for (jr = 1; jr <= i__2; ++jr) {
  471. vl[jr + jc * vl_dim1] *= temp;
  472. /* L30: */
  473. }
  474. } else {
  475. i__2 = *n;
  476. for (jr = 1; jr <= i__2; ++jr) {
  477. vl[jr + jc * vl_dim1] *= temp;
  478. vl[jr + (jc + 1) * vl_dim1] *= temp;
  479. /* L40: */
  480. }
  481. }
  482. L50:
  483. ;
  484. }
  485. }
  486. if (ilvr) {
  487. dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
  488. vr[vr_offset], ldvr, &ierr);
  489. i__1 = *n;
  490. for (jc = 1; jc <= i__1; ++jc) {
  491. if (alphai[jc] < 0.) {
  492. goto L100;
  493. }
  494. temp = 0.;
  495. if (alphai[jc] == 0.) {
  496. i__2 = *n;
  497. for (jr = 1; jr <= i__2; ++jr) {
  498. /* Computing MAX */
  499. d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
  500. abs(d__1));
  501. temp = max(d__2,d__3);
  502. /* L60: */
  503. }
  504. } else {
  505. i__2 = *n;
  506. for (jr = 1; jr <= i__2; ++jr) {
  507. /* Computing MAX */
  508. d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
  509. abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
  510. vr_dim1], abs(d__2));
  511. temp = max(d__3,d__4);
  512. /* L70: */
  513. }
  514. }
  515. if (temp < smlnum) {
  516. goto L100;
  517. }
  518. temp = 1. / temp;
  519. if (alphai[jc] == 0.) {
  520. i__2 = *n;
  521. for (jr = 1; jr <= i__2; ++jr) {
  522. vr[jr + jc * vr_dim1] *= temp;
  523. /* L80: */
  524. }
  525. } else {
  526. i__2 = *n;
  527. for (jr = 1; jr <= i__2; ++jr) {
  528. vr[jr + jc * vr_dim1] *= temp;
  529. vr[jr + (jc + 1) * vr_dim1] *= temp;
  530. /* L90: */
  531. }
  532. }
  533. L100:
  534. ;
  535. }
  536. }
  537. /* End of eigenvector calculation */
  538. }
  539. /* Undo scaling if necessary */
  540. if (ilascl) {
  541. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  542. ierr);
  543. dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  544. ierr);
  545. }
  546. if (ilbscl) {
  547. dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  548. ierr);
  549. }
  550. L110:
  551. work[1] = (doublereal) maxwrk;
  552. return 0;
  553. /* End of DGGEV */
  554. } /* dggev_ */