dgetrf.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. /* dgetrf.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. static integer c_n1 = -1;
  16. static doublereal c_b16 = 1.;
  17. static doublereal c_b19 = -1.;
  18. /* Subroutine */ int dgetrf_(integer *m, integer *n, doublereal *a, integer *
  19. lda, integer *ipiv, integer *info)
  20. {
  21. /* System generated locals */
  22. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
  23. /* Local variables */
  24. integer i__, j, jb, nb;
  25. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  26. integer *, doublereal *, doublereal *, integer *, doublereal *,
  27. integer *, doublereal *, doublereal *, integer *);
  28. integer iinfo;
  29. extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
  30. integer *, integer *, doublereal *, doublereal *, integer *,
  31. doublereal *, integer *), dgetf2_(
  32. integer *, integer *, doublereal *, integer *, integer *, integer
  33. *), xerbla_(char *, integer *);
  34. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  35. integer *, integer *);
  36. extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *,
  37. integer *, integer *, integer *, integer *);
  38. /* -- LAPACK routine (version 3.2) -- */
  39. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  40. /* November 2006 */
  41. /* .. Scalar Arguments .. */
  42. /* .. */
  43. /* .. Array Arguments .. */
  44. /* .. */
  45. /* Purpose */
  46. /* ======= */
  47. /* DGETRF computes an LU factorization of a general M-by-N matrix A */
  48. /* using partial pivoting with row interchanges. */
  49. /* The factorization has the form */
  50. /* A = P * L * U */
  51. /* where P is a permutation matrix, L is lower triangular with unit */
  52. /* diagonal elements (lower trapezoidal if m > n), and U is upper */
  53. /* triangular (upper trapezoidal if m < n). */
  54. /* This is the right-looking Level 3 BLAS version of the algorithm. */
  55. /* Arguments */
  56. /* ========= */
  57. /* M (input) INTEGER */
  58. /* The number of rows of the matrix A. M >= 0. */
  59. /* N (input) INTEGER */
  60. /* The number of columns of the matrix A. N >= 0. */
  61. /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
  62. /* On entry, the M-by-N matrix to be factored. */
  63. /* On exit, the factors L and U from the factorization */
  64. /* A = P*L*U; the unit diagonal elements of L are not stored. */
  65. /* LDA (input) INTEGER */
  66. /* The leading dimension of the array A. LDA >= max(1,M). */
  67. /* IPIV (output) INTEGER array, dimension (min(M,N)) */
  68. /* The pivot indices; for 1 <= i <= min(M,N), row i of the */
  69. /* matrix was interchanged with row IPIV(i). */
  70. /* INFO (output) INTEGER */
  71. /* = 0: successful exit */
  72. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  73. /* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
  74. /* has been completed, but the factor U is exactly */
  75. /* singular, and division by zero will occur if it is used */
  76. /* to solve a system of equations. */
  77. /* ===================================================================== */
  78. /* .. Parameters .. */
  79. /* .. */
  80. /* .. Local Scalars .. */
  81. /* .. */
  82. /* .. External Subroutines .. */
  83. /* .. */
  84. /* .. External Functions .. */
  85. /* .. */
  86. /* .. Intrinsic Functions .. */
  87. /* .. */
  88. /* .. Executable Statements .. */
  89. /* Test the input parameters. */
  90. /* Parameter adjustments */
  91. a_dim1 = *lda;
  92. a_offset = 1 + a_dim1;
  93. a -= a_offset;
  94. --ipiv;
  95. /* Function Body */
  96. *info = 0;
  97. if (*m < 0) {
  98. *info = -1;
  99. } else if (*n < 0) {
  100. *info = -2;
  101. } else if (*lda < max(1,*m)) {
  102. *info = -4;
  103. }
  104. if (*info != 0) {
  105. i__1 = -(*info);
  106. xerbla_("DGETRF", &i__1);
  107. return 0;
  108. }
  109. /* Quick return if possible */
  110. if (*m == 0 || *n == 0) {
  111. return 0;
  112. }
  113. /* Determine the block size for this environment. */
  114. nb = ilaenv_(&c__1, "DGETRF", " ", m, n, &c_n1, &c_n1);
  115. if (nb <= 1 || nb >= min(*m,*n)) {
  116. /* Use unblocked code. */
  117. dgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info);
  118. } else {
  119. /* Use blocked code. */
  120. i__1 = min(*m,*n);
  121. i__2 = nb;
  122. for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  123. /* Computing MIN */
  124. i__3 = min(*m,*n) - j + 1;
  125. jb = min(i__3,nb);
  126. /* Factor diagonal and subdiagonal blocks and test for exact */
  127. /* singularity. */
  128. i__3 = *m - j + 1;
  129. dgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo);
  130. /* Adjust INFO and the pivot indices. */
  131. if (*info == 0 && iinfo > 0) {
  132. *info = iinfo + j - 1;
  133. }
  134. /* Computing MIN */
  135. i__4 = *m, i__5 = j + jb - 1;
  136. i__3 = min(i__4,i__5);
  137. for (i__ = j; i__ <= i__3; ++i__) {
  138. ipiv[i__] = j - 1 + ipiv[i__];
  139. /* L10: */
  140. }
  141. /* Apply interchanges to columns 1:J-1. */
  142. i__3 = j - 1;
  143. i__4 = j + jb - 1;
  144. dlaswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1);
  145. if (j + jb <= *n) {
  146. /* Apply interchanges to columns J+JB:N. */
  147. i__3 = *n - j - jb + 1;
  148. i__4 = j + jb - 1;
  149. dlaswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, &
  150. ipiv[1], &c__1);
  151. /* Compute block row of U. */
  152. i__3 = *n - j - jb + 1;
  153. dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, &
  154. c_b16, &a[j + j * a_dim1], lda, &a[j + (j + jb) *
  155. a_dim1], lda);
  156. if (j + jb <= *m) {
  157. /* Update trailing submatrix. */
  158. i__3 = *m - j - jb + 1;
  159. i__4 = *n - j - jb + 1;
  160. dgemm_("No transpose", "No transpose", &i__3, &i__4, &jb,
  161. &c_b19, &a[j + jb + j * a_dim1], lda, &a[j + (j +
  162. jb) * a_dim1], lda, &c_b16, &a[j + jb + (j + jb) *
  163. a_dim1], lda);
  164. }
  165. }
  166. /* L20: */
  167. }
  168. }
  169. return 0;
  170. /* End of DGETRF */
  171. } /* dgetrf_ */