123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843 |
- /* dgegv.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b27 = 1.;
- static doublereal c_b38 = 0.;
- /* Subroutine */ int dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *
- a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
- doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
- doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2;
- doublereal d__1, d__2, d__3, d__4;
- /* Local variables */
- integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo;
- doublereal eps;
- logical ilv;
- doublereal absb, anrm, bnrm;
- integer itau;
- doublereal temp;
- logical ilvl, ilvr;
- integer lopt;
- doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
- extern logical lsame_(char *, char *);
- integer ileft, iinfo, icols, iwork, irows;
- extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, integer *), dggbal_(char *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- extern doublereal dlamch_(char *), dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- doublereal salfai;
- extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- doublereal salfar;
- extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- dlacpy_(char *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- doublereal safmax;
- char chtemp[1];
- logical ldumma[1];
- extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *), dtgevc_(char *, char *,
- logical *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *, integer *, doublereal *, integer *),
- xerbla_(char *, integer *);
- integer ijobvl, iright;
- logical ilimit;
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer ijobvr;
- extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *);
- doublereal onepls;
- integer lwkmin;
- extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* This routine is deprecated and has been replaced by routine DGGEV. */
- /* DGEGV computes the eigenvalues and, optionally, the left and/or right */
- /* eigenvectors of a real matrix pair (A,B). */
- /* Given two square matrices A and B, */
- /* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
- /* eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
- /* that */
- /* A*x = lambda*B*x. */
- /* An alternate form is to find the eigenvalues mu and corresponding */
- /* eigenvectors y such that */
- /* mu*A*y = B*y. */
- /* These two forms are equivalent with mu = 1/lambda and x = y if */
- /* neither lambda nor mu is zero. In order to deal with the case that */
- /* lambda or mu is zero or small, two values alpha and beta are returned */
- /* for each eigenvalue, such that lambda = alpha/beta and */
- /* mu = beta/alpha. */
- /* The vectors x and y in the above equations are right eigenvectors of */
- /* the matrix pair (A,B). Vectors u and v satisfying */
- /* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */
- /* are left eigenvectors of (A,B). */
- /* Note: this routine performs "full balancing" on A and B -- see */
- /* "Further Details", below. */
- /* Arguments */
- /* ========= */
- /* JOBVL (input) CHARACTER*1 */
- /* = 'N': do not compute the left generalized eigenvectors; */
- /* = 'V': compute the left generalized eigenvectors (returned */
- /* in VL). */
- /* JOBVR (input) CHARACTER*1 */
- /* = 'N': do not compute the right generalized eigenvectors; */
- /* = 'V': compute the right generalized eigenvectors (returned */
- /* in VR). */
- /* N (input) INTEGER */
- /* The order of the matrices A, B, VL, and VR. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the matrix A. */
- /* If JOBVL = 'V' or JOBVR = 'V', then on exit A */
- /* contains the real Schur form of A from the generalized Schur */
- /* factorization of the pair (A,B) after balancing. */
- /* If no eigenvectors were computed, then only the diagonal */
- /* blocks from the Schur form will be correct. See DGGHRD and */
- /* DHGEQZ for details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
- /* On entry, the matrix B. */
- /* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
- /* upper triangular matrix obtained from B in the generalized */
- /* Schur factorization of the pair (A,B) after balancing. */
- /* If no eigenvectors were computed, then only those elements of */
- /* B corresponding to the diagonal blocks from the Schur form of */
- /* A will be correct. See DGGHRD and DHGEQZ for details. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B. LDB >= max(1,N). */
- /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
- /* The real parts of each scalar alpha defining an eigenvalue of */
- /* GNEP. */
- /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
- /* The imaginary parts of each scalar alpha defining an */
- /* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */
- /* eigenvalue is real; if positive, then the j-th and */
- /* (j+1)-st eigenvalues are a complex conjugate pair, with */
- /* ALPHAI(j+1) = -ALPHAI(j). */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* The scalars beta that define the eigenvalues of GNEP. */
- /* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
- /* beta = BETA(j) represent the j-th eigenvalue of the matrix */
- /* pair (A,B), in one of the forms lambda = alpha/beta or */
- /* mu = beta/alpha. Since either lambda or mu may overflow, */
- /* they should not, in general, be computed. */
- /* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) */
- /* If JOBVL = 'V', the left eigenvectors u(j) are stored */
- /* in the columns of VL, in the same order as their eigenvalues. */
- /* If the j-th eigenvalue is real, then u(j) = VL(:,j). */
- /* If the j-th and (j+1)-st eigenvalues form a complex conjugate */
- /* pair, then */
- /* u(j) = VL(:,j) + i*VL(:,j+1) */
- /* and */
- /* u(j+1) = VL(:,j) - i*VL(:,j+1). */
- /* Each eigenvector is scaled so that its largest component has */
- /* abs(real part) + abs(imag. part) = 1, except for eigenvectors */
- /* corresponding to an eigenvalue with alpha = beta = 0, which */
- /* are set to zero. */
- /* Not referenced if JOBVL = 'N'. */
- /* LDVL (input) INTEGER */
- /* The leading dimension of the matrix VL. LDVL >= 1, and */
- /* if JOBVL = 'V', LDVL >= N. */
- /* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) */
- /* If JOBVR = 'V', the right eigenvectors x(j) are stored */
- /* in the columns of VR, in the same order as their eigenvalues. */
- /* If the j-th eigenvalue is real, then x(j) = VR(:,j). */
- /* If the j-th and (j+1)-st eigenvalues form a complex conjugate */
- /* pair, then */
- /* x(j) = VR(:,j) + i*VR(:,j+1) */
- /* and */
- /* x(j+1) = VR(:,j) - i*VR(:,j+1). */
- /* Each eigenvector is scaled so that its largest component has */
- /* abs(real part) + abs(imag. part) = 1, except for eigenvalues */
- /* corresponding to an eigenvalue with alpha = beta = 0, which */
- /* are set to zero. */
- /* Not referenced if JOBVR = 'N'. */
- /* LDVR (input) INTEGER */
- /* The leading dimension of the matrix VR. LDVR >= 1, and */
- /* if JOBVR = 'V', LDVR >= N. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,8*N). */
- /* For good performance, LWORK must generally be larger. */
- /* To compute the optimal value of LWORK, call ILAENV to get */
- /* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: */
- /* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; */
- /* The optimal LWORK is: */
- /* 2*N + MAX( 6*N, N*(NB+1) ). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* = 1,...,N: */
- /* The QZ iteration failed. No eigenvectors have been */
- /* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
- /* should be correct for j=INFO+1,...,N. */
- /* > N: errors that usually indicate LAPACK problems: */
- /* =N+1: error return from DGGBAL */
- /* =N+2: error return from DGEQRF */
- /* =N+3: error return from DORMQR */
- /* =N+4: error return from DORGQR */
- /* =N+5: error return from DGGHRD */
- /* =N+6: error return from DHGEQZ (other than failed */
- /* iteration) */
- /* =N+7: error return from DTGEVC */
- /* =N+8: error return from DGGBAK (computing VL) */
- /* =N+9: error return from DGGBAK (computing VR) */
- /* =N+10: error return from DLASCL (various calls) */
- /* Further Details */
- /* =============== */
- /* Balancing */
- /* --------- */
- /* This driver calls DGGBAL to both permute and scale rows and columns */
- /* of A and B. The permutations PL and PR are chosen so that PL*A*PR */
- /* and PL*B*R will be upper triangular except for the diagonal blocks */
- /* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
- /* possible. The diagonal scaling matrices DL and DR are chosen so */
- /* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
- /* one (except for the elements that start out zero.) */
- /* After the eigenvalues and eigenvectors of the balanced matrices */
- /* have been computed, DGGBAK transforms the eigenvectors back to what */
- /* they would have been (in perfect arithmetic) if they had not been */
- /* balanced. */
- /* Contents of A and B on Exit */
- /* -------- -- - --- - -- ---- */
- /* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
- /* both), then on exit the arrays A and B will contain the real Schur */
- /* form[*] of the "balanced" versions of A and B. If no eigenvectors */
- /* are computed, then only the diagonal blocks will be correct. */
- /* [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", */
- /* by Golub & van Loan, pub. by Johns Hopkins U. Press. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1;
- vr -= vr_offset;
- --work;
- /* Function Body */
- if (lsame_(jobvl, "N")) {
- ijobvl = 1;
- ilvl = FALSE_;
- } else if (lsame_(jobvl, "V")) {
- ijobvl = 2;
- ilvl = TRUE_;
- } else {
- ijobvl = -1;
- ilvl = FALSE_;
- }
- if (lsame_(jobvr, "N")) {
- ijobvr = 1;
- ilvr = FALSE_;
- } else if (lsame_(jobvr, "V")) {
- ijobvr = 2;
- ilvr = TRUE_;
- } else {
- ijobvr = -1;
- ilvr = FALSE_;
- }
- ilv = ilvl || ilvr;
- /* Test the input arguments */
- /* Computing MAX */
- i__1 = *n << 3;
- lwkmin = max(i__1,1);
- lwkopt = lwkmin;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- *info = 0;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
- *info = -12;
- } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
- *info = -14;
- } else if (*lwork < lwkmin && ! lquery) {
- *info = -16;
- }
- if (*info == 0) {
- nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1);
- nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1);
- nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1);
- /* Computing MAX */
- i__1 = max(nb1,nb2);
- nb = max(i__1,nb3);
- /* Computing MAX */
- i__1 = *n * 6, i__2 = *n * (nb + 1);
- lopt = (*n << 1) + max(i__1,i__2);
- work[1] = (doublereal) lopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGEGV ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Get machine constants */
- eps = dlamch_("E") * dlamch_("B");
- safmin = dlamch_("S");
- safmin += safmin;
- safmax = 1. / safmin;
- onepls = eps * 4 + 1.;
- /* Scale A */
- anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
- anrm1 = anrm;
- anrm2 = 1.;
- if (anrm < 1.) {
- if (safmax * anrm < 1.) {
- anrm1 = safmin;
- anrm2 = safmax * anrm;
- }
- }
- if (anrm > 0.) {
- dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 10;
- return 0;
- }
- }
- /* Scale B */
- bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
- bnrm1 = bnrm;
- bnrm2 = 1.;
- if (bnrm < 1.) {
- if (safmax * bnrm < 1.) {
- bnrm1 = safmin;
- bnrm2 = safmax * bnrm;
- }
- }
- if (bnrm > 0.) {
- dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 10;
- return 0;
- }
- }
- /* Permute the matrix to make it more nearly triangular */
- /* Workspace layout: (8*N words -- "work" requires 6*N words) */
- /* left_permutation, right_permutation, work... */
- ileft = 1;
- iright = *n + 1;
- iwork = iright + *n;
- dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
- ileft], &work[iright], &work[iwork], &iinfo);
- if (iinfo != 0) {
- *info = *n + 1;
- goto L120;
- }
- /* Reduce B to triangular form, and initialize VL and/or VR */
- /* Workspace layout: ("work..." must have at least N words) */
- /* left_permutation, right_permutation, tau, work... */
- irows = ihi + 1 - ilo;
- if (ilv) {
- icols = *n + 1 - ilo;
- } else {
- icols = irows;
- }
- itau = iwork;
- iwork = itau + irows;
- i__1 = *lwork + 1 - iwork;
- dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 2;
- goto L120;
- }
- i__1 = *lwork + 1 - iwork;
- dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
- iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 3;
- goto L120;
- }
- if (ilvl) {
- dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
- ;
- i__1 = irows - 1;
- i__2 = irows - 1;
- dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo +
- 1 + ilo * vl_dim1], ldvl);
- i__1 = *lwork + 1 - iwork;
- dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
- itau], &work[iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 4;
- goto L120;
- }
- }
- if (ilvr) {
- dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
- ;
- }
- /* Reduce to generalized Hessenberg form */
- if (ilv) {
- /* Eigenvectors requested -- work on whole matrix. */
- dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
- } else {
- dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
- &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
- vr_offset], ldvr, &iinfo);
- }
- if (iinfo != 0) {
- *info = *n + 5;
- goto L120;
- }
- /* Perform QZ algorithm */
- /* Workspace layout: ("work..." must have at least 1 word) */
- /* left_permutation, right_permutation, work... */
- iwork = itau;
- if (ilv) {
- *(unsigned char *)chtemp = 'S';
- } else {
- *(unsigned char *)chtemp = 'E';
- }
- i__1 = *lwork + 1 - iwork;
- dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
- ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- if (iinfo > 0 && iinfo <= *n) {
- *info = iinfo;
- } else if (iinfo > *n && iinfo <= *n << 1) {
- *info = iinfo - *n;
- } else {
- *info = *n + 6;
- }
- goto L120;
- }
- if (ilv) {
- /* Compute Eigenvectors (DTGEVC requires 6*N words of workspace) */
- if (ilvl) {
- if (ilvr) {
- *(unsigned char *)chtemp = 'B';
- } else {
- *(unsigned char *)chtemp = 'L';
- }
- } else {
- *(unsigned char *)chtemp = 'R';
- }
- dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
- &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
- iwork], &iinfo);
- if (iinfo != 0) {
- *info = *n + 7;
- goto L120;
- }
- /* Undo balancing on VL and VR, rescale */
- if (ilvl) {
- dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
- vl[vl_offset], ldvl, &iinfo);
- if (iinfo != 0) {
- *info = *n + 8;
- goto L120;
- }
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- if (alphai[jc] < 0.) {
- goto L50;
- }
- temp = 0.;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
- abs(d__1));
- temp = max(d__2,d__3);
- /* L10: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
- abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
- vl_dim1], abs(d__2));
- temp = max(d__3,d__4);
- /* L20: */
- }
- }
- if (temp < safmin) {
- goto L50;
- }
- temp = 1. / temp;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + jc * vl_dim1] *= temp;
- /* L30: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + jc * vl_dim1] *= temp;
- vl[jr + (jc + 1) * vl_dim1] *= temp;
- /* L40: */
- }
- }
- L50:
- ;
- }
- }
- if (ilvr) {
- dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
- vr[vr_offset], ldvr, &iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- goto L120;
- }
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- if (alphai[jc] < 0.) {
- goto L100;
- }
- temp = 0.;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
- abs(d__1));
- temp = max(d__2,d__3);
- /* L60: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
- abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
- vr_dim1], abs(d__2));
- temp = max(d__3,d__4);
- /* L70: */
- }
- }
- if (temp < safmin) {
- goto L100;
- }
- temp = 1. / temp;
- if (alphai[jc] == 0.) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + jc * vr_dim1] *= temp;
- /* L80: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + jc * vr_dim1] *= temp;
- vr[jr + (jc + 1) * vr_dim1] *= temp;
- /* L90: */
- }
- }
- L100:
- ;
- }
- }
- /* End of eigenvector calculation */
- }
- /* Undo scaling in alpha, beta */
- /* Note: this does not give the alpha and beta for the unscaled */
- /* problem. */
- /* Un-scaling is limited to avoid underflow in alpha and beta */
- /* if they are significant. */
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- absar = (d__1 = alphar[jc], abs(d__1));
- absai = (d__1 = alphai[jc], abs(d__1));
- absb = (d__1 = beta[jc], abs(d__1));
- salfar = anrm * alphar[jc];
- salfai = anrm * alphai[jc];
- sbeta = bnrm * beta[jc];
- ilimit = FALSE_;
- scale = 1.;
- /* Check for significant underflow in ALPHAI */
- /* Computing MAX */
- d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
- absb;
- if (abs(salfai) < safmin && absai >= max(d__1,d__2)) {
- ilimit = TRUE_;
- /* Computing MAX */
- d__1 = onepls * safmin, d__2 = anrm2 * absai;
- scale = onepls * safmin / anrm1 / max(d__1,d__2);
- } else if (salfai == 0.) {
- /* If insignificant underflow in ALPHAI, then make the */
- /* conjugate eigenvalue real. */
- if (alphai[jc] < 0. && jc > 1) {
- alphai[jc - 1] = 0.;
- } else if (alphai[jc] > 0. && jc < *n) {
- alphai[jc + 1] = 0.;
- }
- }
- /* Check for significant underflow in ALPHAR */
- /* Computing MAX */
- d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps *
- absb;
- if (abs(salfar) < safmin && absar >= max(d__1,d__2)) {
- ilimit = TRUE_;
- /* Computing MAX */
- /* Computing MAX */
- d__3 = onepls * safmin, d__4 = anrm2 * absar;
- d__1 = scale, d__2 = onepls * safmin / anrm1 / max(d__3,d__4);
- scale = max(d__1,d__2);
- }
- /* Check for significant underflow in BETA */
- /* Computing MAX */
- d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
- absai;
- if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) {
- ilimit = TRUE_;
- /* Computing MAX */
- /* Computing MAX */
- d__3 = onepls * safmin, d__4 = bnrm2 * absb;
- d__1 = scale, d__2 = onepls * safmin / bnrm1 / max(d__3,d__4);
- scale = max(d__1,d__2);
- }
- /* Check for possible overflow when limiting scaling */
- if (ilimit) {
- /* Computing MAX */
- d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2),
- d__2 = abs(sbeta);
- temp = scale * safmin * max(d__1,d__2);
- if (temp > 1.) {
- scale /= temp;
- }
- if (scale < 1.) {
- ilimit = FALSE_;
- }
- }
- /* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */
- if (ilimit) {
- salfar = scale * alphar[jc] * anrm;
- salfai = scale * alphai[jc] * anrm;
- sbeta = scale * beta[jc] * bnrm;
- }
- alphar[jc] = salfar;
- alphai[jc] = salfai;
- beta[jc] = sbeta;
- /* L110: */
- }
- L120:
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DGEGV */
- } /* dgegv_ */
|