123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- /* dgbtrs.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b7 = -1.;
- static integer c__1 = 1;
- static doublereal c_b23 = 1.;
- /* Subroutine */ int dgbtrs_(char *trans, integer *n, integer *kl, integer *
- ku, integer *nrhs, doublereal *ab, integer *ldab, integer *ipiv,
- doublereal *b, integer *ldb, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__, j, l, kd, lm;
- extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dswap_(integer *,
- doublereal *, integer *, doublereal *, integer *), dtbsv_(char *,
- char *, char *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *);
- logical lnoti;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- logical notran;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGBTRS solves a system of linear equations */
- /* A * X = B or A' * X = B */
- /* with a general band matrix A using the LU factorization computed */
- /* by DGBTRF. */
- /* Arguments */
- /* ========= */
- /* TRANS (input) CHARACTER*1 */
- /* Specifies the form of the system of equations. */
- /* = 'N': A * X = B (No transpose) */
- /* = 'T': A'* X = B (Transpose) */
- /* = 'C': A'* X = B (Conjugate transpose = Transpose) */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* KL (input) INTEGER */
- /* The number of subdiagonals within the band of A. KL >= 0. */
- /* KU (input) INTEGER */
- /* The number of superdiagonals within the band of A. KU >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrix B. NRHS >= 0. */
- /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* Details of the LU factorization of the band matrix A, as */
- /* computed by DGBTRF. U is stored as an upper triangular band */
- /* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
- /* the multipliers used during the factorization are stored in */
- /* rows KL+KU+2 to 2*KL+KU+1. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* The pivot indices; for 1 <= i <= N, row i of the matrix was */
- /* interchanged with row IPIV(i). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the right hand side matrix B. */
- /* On exit, the solution matrix X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- --ipiv;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- *info = 0;
- notran = lsame_(trans, "N");
- if (! notran && ! lsame_(trans, "T") && ! lsame_(
- trans, "C")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kl < 0) {
- *info = -3;
- } else if (*ku < 0) {
- *info = -4;
- } else if (*nrhs < 0) {
- *info = -5;
- } else if (*ldab < (*kl << 1) + *ku + 1) {
- *info = -7;
- } else if (*ldb < max(1,*n)) {
- *info = -10;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGBTRS", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0 || *nrhs == 0) {
- return 0;
- }
- kd = *ku + *kl + 1;
- lnoti = *kl > 0;
- if (notran) {
- /* Solve A*X = B. */
- /* Solve L*X = B, overwriting B with X. */
- /* L is represented as a product of permutations and unit lower */
- /* triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1), */
- /* where each transformation L(i) is a rank-one modification of */
- /* the identity matrix. */
- if (lnoti) {
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__2 = *kl, i__3 = *n - j;
- lm = min(i__2,i__3);
- l = ipiv[j];
- if (l != j) {
- dswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
- }
- dger_(&lm, nrhs, &c_b7, &ab[kd + 1 + j * ab_dim1], &c__1, &b[
- j + b_dim1], ldb, &b[j + 1 + b_dim1], ldb);
- /* L10: */
- }
- }
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Solve U*X = B, overwriting B with X. */
- i__2 = *kl + *ku;
- dtbsv_("Upper", "No transpose", "Non-unit", n, &i__2, &ab[
- ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);
- /* L20: */
- }
- } else {
- /* Solve A'*X = B. */
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Solve U'*X = B, overwriting B with X. */
- i__2 = *kl + *ku;
- dtbsv_("Upper", "Transpose", "Non-unit", n, &i__2, &ab[ab_offset],
- ldab, &b[i__ * b_dim1 + 1], &c__1);
- /* L30: */
- }
- /* Solve L'*X = B, overwriting B with X. */
- if (lnoti) {
- for (j = *n - 1; j >= 1; --j) {
- /* Computing MIN */
- i__1 = *kl, i__2 = *n - j;
- lm = min(i__1,i__2);
- dgemv_("Transpose", &lm, nrhs, &c_b7, &b[j + 1 + b_dim1], ldb,
- &ab[kd + 1 + j * ab_dim1], &c__1, &c_b23, &b[j +
- b_dim1], ldb);
- l = ipiv[j];
- if (l != j) {
- dswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
- }
- /* L40: */
- }
- }
- }
- return 0;
- /* End of DGBTRS */
- } /* dgbtrs_ */
|